# CoNR: Collaborative Neural Rendering using Anime Character Sheets
CoNR: 用于二次元手绘设定稿动画化的神经渲染器 ## [HomePage](https://conr.ml) | Colab [English](https://colab.research.google.com/github/megvii-research/CoNR/blob/main/conr.ipynb)/[中文](https://colab.research.google.com/github/megvii-research/CoNR/blob/main/conr_chinese.ipynb) | [arXiv](https://arxiv.org/abs/2207.05378) ![image](images/MAIN.png) ## Introduction This project is the official implement of [Collaborative Neural Rendering using Anime Character Sheets](https://arxiv.org/abs/2207.05378), which aims to genarate vivid dancing videos from hand-drawn anime character sheets(ACS). Watch more demos in our [HomePage](https://conr.ml). 该项目为论文[Collaborative Neural Rendering using Anime Character Sheets](https://arxiv.org/abs/2207.05378)的官方复现,旨在从手绘人物设定稿生成生动的舞蹈动画。您可以在我们的[主页](https://conr.ml)中查看更多视频 demo。 Contributors: [@transpchan](https://github.com/transpchan/), [@P2Oileen](https://github.com/P2Oileen), [@hzwer](https://github.com/hzwer) ## Usage #### Prerequisites * NVIDIA GPU + CUDA + CUDNN * Python 3.6 #### Installation * Clone this repository ```bash git clone https://github.com/megvii-research/CoNR ``` * Dependencies To install all the dependencies, please run the following commands. ```bash cd CoNR pip install -r requirements.txt ``` * Download Weights Download weights from Google Drive. Alternatively, you can download from [Baidu Netdisk](https://pan.baidu.com/s/1U11iIk-DiJodgCveSzB6ig?pwd=RDxc) (password:RDxc). ``` mkdir weights && cd weights gdown https://drive.google.com/uc?id=1M1LEpx70tJ72AIV2TQKr6NE_7mJ7tLYx gdown https://drive.google.com/uc?id=1YvZy3NHkJ6gC3pq_j8agcbEJymHCwJy0 gdown https://drive.google.com/uc?id=1AOWZxBvTo9nUf2_9Y7Xe27ZFQuPrnx9i gdown https://drive.google.com/uc?id=19jM1-GcqgGoE1bjmQycQw_vqD9C5e-Jm ``` #### Prepare inputs We prepared two Ultra-Dense Pose sequences for two characters, you can generate more UDPs via 3D models and motions. [Baidu Netdisk](https://pan.baidu.com/s/1hWvz4iQXnVTaTSb6vu1NBg?pwd=RDxc) (password:RDxc) ``` # for short hair girl gdown https://drive.google.com/uc?id=11HMSaEkN__QiAZSnCuaM6GI143xo62KO unzip short_hair.zip mv short_hair/ poses/ # for double ponytail girl gdown https://drive.google.com/uc?id=1WNnGVuU0ZLyEn04HzRKzITXqib1wwM4Q unzip double_ponytail.zip mv double_ponytail/ poses/ ``` We provide sample inputs of anime character sheets, you can also draw more by yourself. ``` # for short hair girl gdown https://drive.google.com/uc?id=1r-3hUlENSWj81ve2IUPkRKNB81o9WrwT unzip short_hair_images.zip mv short_hair_images/ character_sheet/ # for double ponytail girl gdown https://drive.google.com/uc?id=1XMrJf9Lk_dWgXyTJhbEK2LZIXL9G3MWc unzip double_ponytail_images.zip mv double_ponytail_images/ character_sheet/ ``` #### RUN! We provide two ways: with web UI or via terminal. * with web UI (powered by [Streamlit](https://streamlit.io/)) ``` streamlit run streamlit.py --server_port=8501 ``` then open your browser and visit `localhost:8501`, follow the instructions to genarate video. * via terminal ``` mkdir {dir_to_save_result} python -m torch.distributed.launch \ --nproc_per_node=1 train.py --mode=test \ --world_size=1 --dataloaders=2 \ --test_input_poses_images={dir_to_poses} \ --test_input_person_images={dir_to_character_sheet} \ --test_output_dir={dir_to_save_result} \ --test_checkpoint_dir={dir_to_weights} ffmpeg -r 30 -y -i {dir_to_save_result}/%d.png -r 30 -c:v libx264 output.mp4 -r 30 ``` ## Citation ```bibtex @article{lin2022conr, title={Collaborative Neural Rendering using Anime Character Sheets}, author={Lin, Zuzeng and Huang, Ailin and Huang, Zhewei and Hu, Chen and Zhou, Shuchang}, journal={arXiv preprint arXiv:2207.05378}, year={2022} } ```