import cv2 import numpy as np import torch from torch.utils.data import Dataset import os cv2.setNumThreads(1) os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" class RandomResizedCropWithAutoCenteringAndZeroPadding (object): def __init__(self, output_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), center_jitter=(0.1, 0.1), size_from_alpha_mask=True): assert isinstance(output_size, (int, tuple)) if isinstance(output_size, int): self.output_size = (output_size, output_size) else: assert len(output_size) == 2 self.output_size = output_size assert isinstance(scale, tuple) assert isinstance(ratio, tuple) if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): raise ValueError("Scale and ratio should be of kind (min, max)") self.size_from_alpha_mask = size_from_alpha_mask self.scale = scale self.ratio = ratio assert isinstance(center_jitter, tuple) self.center_jitter = center_jitter def __call__(self, sample): imidx, image = sample['imidx'], sample["image_np"] if "labels" in sample: label = sample["labels"] else: label = None im_h, im_w = image.shape[:2] if self.size_from_alpha_mask and image.shape[2] == 4: # compute bbox from alpha mask bbox_left, bbox_top, bbox_w, bbox_h = cv2.boundingRect( (image[:, :, 3] > 0).astype(np.uint8)) else: bbox_left, bbox_top = 0, 0 bbox_h, bbox_w = image.shape[:2] if bbox_h <= 1 and bbox_w <= 1: sample["bad"] = 0 else: # detect too small image here alpha_varea = np.sum((image[:, :, 3] > 0).astype(np.uint8)) image_area = image.shape[0]*image.shape[1] if alpha_varea/image_area < 0.001: sample["bad"] = alpha_varea # detect bad image if "bad" in sample: # baddata_dir = os.path.join(os.getcwd(), 'test_data', "baddata" + os.sep) # save_output(str(imidx)+".png",image,label,baddata_dir) bbox_h, bbox_w = image.shape[:2] sample["image_np"] = np.zeros( [self.output_size[0], self.output_size[1], image.shape[2]], dtype=image.dtype) if label is not None: sample["labels"] = np.zeros( [self.output_size[0], self.output_size[1], 4], dtype=label.dtype) return sample # compute default area by making sure output_size contains bbox_w * bbox_h jitter_h = np.random.uniform(-bbox_h * self.center_jitter[0], bbox_h*self.center_jitter[0]) jitter_w = np.random.uniform(-bbox_w * self.center_jitter[1], bbox_w*self.center_jitter[1]) # h/w target_aspect_ratio = np.exp( np.log(self.output_size[0]/self.output_size[1]) + np.random.uniform(np.log(self.ratio[0]), np.log(self.ratio[1])) ) source_aspect_ratio = bbox_h/bbox_w if target_aspect_ratio < source_aspect_ratio: # same w, target has larger h, use h to align target_height = bbox_h * \ np.random.uniform(self.scale[0], self.scale[1]) virtual_h = int( round(target_height)) virtual_w = int( round(target_height / target_aspect_ratio)) # h/w else: # same w, source has larger h, use w to align target_width = bbox_w * \ np.random.uniform(self.scale[0], self.scale[1]) virtual_h = int( round(target_width * target_aspect_ratio)) # h/w virtual_w = int( round(target_width)) # print("required aspect ratio:", target_aspect_ratio) virtual_top = int(round(bbox_top + jitter_h - (virtual_h-bbox_h)/2)) virutal_left = int(round(bbox_left + jitter_w - (virtual_w-bbox_w)/2)) if virtual_top < 0: top_padding = abs(virtual_top) crop_top = 0 else: top_padding = 0 crop_top = virtual_top if virutal_left < 0: left_padding = abs(virutal_left) crop_left = 0 else: left_padding = 0 crop_left = virutal_left if virtual_top+virtual_h > im_h: bottom_padding = abs(im_h-(virtual_top+virtual_h)) crop_bottom = im_h else: bottom_padding = 0 crop_bottom = virtual_top+virtual_h if virutal_left+virtual_w > im_w: right_padding = abs(im_w-(virutal_left+virtual_w)) crop_right = im_w else: right_padding = 0 crop_right = virutal_left+virtual_w # crop image = image[crop_top:crop_bottom, crop_left: crop_right] if label is not None: label = label[crop_top:crop_bottom, crop_left: crop_right] # pad if top_padding + bottom_padding + left_padding + right_padding > 0: padding = ((top_padding, bottom_padding), (left_padding, right_padding), (0, 0)) # print("padding", padding) image = np.pad(image, padding, mode='constant') if label is not None: label = np.pad(label, padding, mode='constant') if image.shape[0]/image.shape[1] - virtual_h/virtual_w > 0.001: print("virtual aspect ratio:", virtual_h/virtual_w) print("image aspect ratio:", image.shape[0]/image.shape[1]) assert (image.shape[0]/image.shape[1] - virtual_h/virtual_w < 0.001) sample["crop"] = np.array( [im_h, im_w, crop_top, crop_bottom, crop_left, crop_right, top_padding, bottom_padding, left_padding, right_padding, image.shape[0], image.shape[1]]) # resize if self.output_size[1] != image.shape[1] or self.output_size[0] != image.shape[0]: if self.output_size[1] > image.shape[1] and self.output_size[0] > image.shape[0]: # enlarging image = cv2.resize( image, (self.output_size[1], self.output_size[0]), interpolation=cv2.INTER_LINEAR) else: # shrinking image = cv2.resize( image, (self.output_size[1], self.output_size[0]), interpolation=cv2.INTER_AREA) if label is not None: label = cv2.resize(label, (self.output_size[1], self.output_size[0]), interpolation=cv2.INTER_NEAREST_EXACT) assert image.shape[0] == self.output_size[0] and image.shape[1] == self.output_size[1] sample['imidx'], sample["image_np"] = imidx, image if label is not None: assert label.shape[0] == self.output_size[0] and label.shape[1] == self.output_size[1] sample["labels"] = label return sample class FileDataset(Dataset): def __init__(self, image_names_list, fg_img_lbl_transform=None, shader_pose_use_gt_udp_test=True, shader_target_use_gt_rgb_debug=False): self.image_name_list = image_names_list self.fg_img_lbl_transform = fg_img_lbl_transform self.shader_pose_use_gt_udp_test = shader_pose_use_gt_udp_test self.shader_target_use_gt_rgb_debug = shader_target_use_gt_rgb_debug def __len__(self): return len(self.image_name_list) def get_gt_from_disk(self, idx, imname, read_label): if read_label: # read label with open(imname, mode="rb") as bio: if imname.find(".npz") > 0: label_np = np.load(bio, allow_pickle=True)[ 'i'].astype(np.float32, copy=False) else: label_np = cv2.cvtColor(cv2.imdecode(np.frombuffer(bio.read( ), np.uint8), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH | cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA) assert (4 == label_np.shape[2]) # fake image out of valid label image_np = (label_np*255).clip(0, 255).astype(np.uint8, copy=False) # assemble sample sample = {'imidx': np.array( [idx]), "image_np": image_np, "labels": label_np} else: # read image as unit8 with open(imname, mode="rb") as bio: image_np = cv2.cvtColor(cv2.imdecode(np.frombuffer( bio.read(), np.uint8), cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA) # image_np = Image.open(bio) # image_np = np.array(image_np) assert (3 == len(image_np.shape)) if (image_np.shape[2] == 4): mask_np = image_np[:, :, 3:4] image_np = (image_np[:, :, :3] * (image_np[:, :, 3][:, :, np.newaxis]/255.0)).clip(0, 255).astype(np.uint8, copy=False) elif (image_np.shape[2] == 3): # generate a fake mask # Fool-proofing mask_np = np.ones( (image_np.shape[0], image_np.shape[1], 1), dtype=np.uint8)*255 print("WARN: transparent background is preferred for image ", imname) else: raise ValueError("weird shape of image ", imname, image_np) image_np = np.concatenate((image_np, mask_np), axis=2) sample = {'imidx': np.array( [idx]), "image_np": image_np} # apply fg_img_lbl_transform if self.fg_img_lbl_transform: sample = self.fg_img_lbl_transform(sample) if "labels" in sample: # return UDP as 4chn XYZV float tensor sample["labels"] = torch.from_numpy( sample["labels"].transpose((2, 0, 1))) assert (sample["labels"].dtype == torch.float32) if "image_np" in sample: # return image as 3chn RGB uint8 tensor and 1chn A uint8 tensor sample["mask"] = torch.from_numpy( sample["image_np"][:, :, 3:4].transpose((2, 0, 1))) assert (sample["mask"].dtype == torch.uint8) sample["image"] = torch.from_numpy( sample["image_np"][:, :, :3].transpose((2, 0, 1))) assert (sample["image"].dtype == torch.uint8) del sample["image_np"] return sample def __getitem__(self, idx): sample = { 'imidx': np.array([idx])} target = self.get_gt_from_disk( idx, imname=self.image_name_list[idx][0], read_label=self.shader_pose_use_gt_udp_test) if self.shader_target_use_gt_rgb_debug: sample["pose_images"] = torch.stack([target["image"]]) sample["pose_mask"] = target["mask"] elif self.shader_pose_use_gt_udp_test: sample["pose_label"] = target["labels"] sample["pose_mask"] = target["mask"] else: sample["pose_images"] = torch.stack([target["image"]]) if "crop" in target: sample["pose_crop"] = target["crop"] character_images = [] character_masks = [] for i in range(1, len(self.image_name_list[idx])): source = self.get_gt_from_disk( idx, self.image_name_list[idx][i], read_label=False) character_images.append(source["image"]) character_masks.append(source["mask"]) character_images = torch.stack(character_images) character_masks = torch.stack(character_masks) sample.update({ "character_images": character_images, "character_masks": character_masks }) # do not make fake labels in inference return sample