Spaces:
No application file
No application file
File size: 56,927 Bytes
73f4c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 |
# coding=utf-8
# Copyright 2023 Authors of "A Watermark for Large Language Models"
# available at https://arxiv.org/abs/2301.10226
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from types import NoneType
from typing import Union
import os
import argparse
from functools import partial
from tqdm import tqdm
import wandb
import torch
import numpy as np
import sklearn.metrics as metrics
from datasets import Dataset, Sequence
from transformers import DataCollatorWithPadding
from utils.submitit import str2bool # better bool flag type for argparse
from utils.io import read_jsonlines, read_json, write_json, write_jsonlines
from utils.notebooks import filter_text_col_length, infer_length_column
from utils.evaluation import (
SUPPORTED_METRICS,
NO_CHECK_ARGS,
ROC_TEST_STAT_SUFFIXES,
FILTER_BY_COLUMNS,
conditional_no_check_args,
load_oracle_model,
evaluate_ppl,
load_detector,
compute_z_scores,
compute_windowed_z_scores,
compute_run_len_chsqrd_stats,
compute_repetition_diversity,
compute_p_sp,
compute_coherence,
compute_mauve,
compute_detect_retrieval,
load_tokenizer,
concat_rows,
)
print(f"Current huggingface cache dir: {os.environ['HF_HOME']}")
from datasets import disable_caching
disable_caching()
def main(args):
###########################################################################
# Create output dir if it doesn't exist, and warn if it contains metric file
###########################################################################
gen_table_w_metrics_path = f"{args.output_dir}/gen_table_w_metrics.jsonl"
metrics_meta_path = f"{args.output_dir}/gen_table_w_metrics_meta.json"
print(f"Output dir for this run: {args.output_dir}")
# notify if exists
if os.path.exists(args.output_dir):
print(f"Output dir for this run already exists!")
print(f"Contents: {sorted(os.listdir(args.output_dir))}")
# warn if metrics file exists
if os.path.exists(gen_table_w_metrics_path):
if not args.overwrite_output_file:
print(
f"WARNING: Exiting to avoid overwriting output file. "
f"Pass the '--overwrite_output_file' flag to ignore this check."
)
exit()
else:
print(
f"WARNING: Found existing generation files with metrics added at this output dir. "
f"Overwriting anyway :/"
)
else:
# create the output dir where run artifacts are stored
os.makedirs(args.output_dir)
###########################################################################
# Parse metrics to log - ppl, zscore, etc
###########################################################################
# check that all metrics are supported
metric_support = [metric in SUPPORTED_METRICS for metric in args.evaluation_metrics]
assert all(metric_support), (
f"Unsupported metric '{args.evaluation_metrics[metric_support.index(False)]}' in"
f" {args.evaluation_metrics}. Supported metrics are: {SUPPORTED_METRICS}"
)
# Hack check that if prefix_lengths exists then the method must be
# detect-retrieval (for now) because other methods don't support the
# sparse dataset with Nones all over the place
if "prefix_lengths" in args.__dict__:
# assert args.evaluation_metrics == [
# "detect-retrieval"
# ], f"Currently, only the detect-retrieval metric supports the prefix_lengths column. "
print(
f"WARNING: Found prefix_lengths column assuming that this is either retireval or detectgpt"
)
print(f"Evaluation metrics to compute: {args.evaluation_metrics}")
###########################################################################
# Load generations
###########################################################################
print(f"Input dir for this run: {args.input_dir}")
print(f"Loading previously generated outputs for evaluation via oracle model and metrics...")
# check for the "attacked version" of the gen table first
gen_table_meta_path = f"{args.input_dir}/gen_table_attacked_meta.json"
gen_table_path = f"{args.input_dir}/gen_table_attacked.jsonl"
safe_gen_table_path = f"{args.input_dir}/gen_table_attacked_safe.jsonl"
loaded_attacked = True
attack_variants_exist = [
os.path.exists(gen_table_meta_path),
os.path.exists(gen_table_path),
]
if not all(attack_variants_exist):
loaded_attacked = False
gen_table_meta_path = f"{args.input_dir}/gen_table_meta.json"
gen_table_path = f"{args.input_dir}/gen_table.jsonl"
safe_gen_table_path = f"{args.input_dir}/gen_table_safe.jsonl"
assert os.path.exists(
gen_table_meta_path
), f"failed file check for prev generations metadata json file: {gen_table_meta_path}"
assert os.path.exists(
gen_table_path
), f"failed file check for prev generations jsonl file: {gen_table_path}"
assert not os.path.exists(safe_gen_table_path), (
f"failed for safety bc there is a secondary 'safe' marked file",
f" in this dir indicating a possible issue with the generation step. ",
)
cmdline_args = args.__dict__.copy()
prev_gen_table_meta = read_json(gen_table_meta_path)
joined_args = prev_gen_table_meta.copy()
for k, v in cmdline_args.items():
if v is not None:
joined_args.update({k: v})
else:
print(
f"cmdline arg {k} is None, leaving it as the value found in the input metadata: {prev_gen_table_meta[k]}"
)
# check that the args used to generate the prev generations are the same as
# the current args, for the intersection of keys
if not args.overwrite_args:
# update the no check args based on the current state of args
current_no_check_args = conditional_no_check_args(
NO_CHECK_ARGS, args.evaluation_metrics, args
)
for key in prev_gen_table_meta.keys():
if key in current_no_check_args:
continue
assert joined_args[key] == prev_gen_table_meta[key], (
f"failed for safety bc after merging the prev metadata with "
f"the current cmdline args, values for '{key}' are not the same. "
f"in metadata: {prev_gen_table_meta[key]}, passed: {cmdline_args[key]}. "
f"Pass the '--overwrite_args' flag to ignore this check."
)
args = argparse.Namespace(**joined_args)
gen_table = [ex for ex in read_jsonlines(gen_table_path)]
if args.limit_rows == -1:
gen_table_ds = Dataset.from_list(gen_table)
else:
gen_table_ds = Dataset.from_list(gen_table[: args.limit_rows])
###########################################################################
# Extract the seeding scheme fine grained parameters
###########################################################################
from utils.evaluation import scheme_hparam_extractor
args.__dict__.update(scheme_hparam_extractor(args.seeding_scheme))
print(f"seeding_scheme: {args.seeding_scheme}")
print(f"prf_type: {args.prf_type}")
print(f"anchored: {args.anchored}")
print(f"context_width: {args.context_width}")
print(f"self_salt: {args.self_salt}")
###########################################################################
# Concat logic for multiple generations
###########################################################################
if args.concat_rows != 0:
assert isinstance(args.concat_rows, int), f"Invalid concat_rows arg: {args.concat_rows}. "
# set to all rows if -1
if args.concat_rows == -1:
args.concat_rows = len(gen_table_ds)
if args.shuffle_before_concat:
print(f"Shuffling the gen table before concatenating every {args.concat_rows} rows...")
gen_table_ds = gen_table_ds.shuffle()
print(f"Concatenating every {args.concat_rows} rows of the gen table...")
# we concat all cols in OUTPUT_TEXT_COLUMN_NAMES
# and update the length col to reflect the new length
# which means we need to tokenize the new text temporarily
# to get the new length
tokenizer = load_tokenizer(args)
concat_partial = partial(concat_rows, tokenizer=tokenizer, args=args)
# manually write a btach loop bc hf doesnt support returning fewer rows than input
concatenated_rows = []
for i in tqdm(range(0, len(gen_table_ds), args.concat_rows)):
batch = gen_table_ds[i : i + args.concat_rows]
concatenated_rows.append(concat_partial(batch))
gen_table_concated_ds = Dataset.from_list(concatenated_rows)
# overwrite the args.max_new_tokens to reflect the implicit new target length T
# which is concat_rows * max_new_tokens
args.max_new_tokens = args.concat_rows * args.max_new_tokens
# write the dataset out in the same filename as the original
# but check that the input dir is different from the output dir
assert (
args.input_dir != args.output_dir
), f"Input dir and output dir must be different to write out the result of concat rows."
if loaded_attacked:
concat_meta_path = f"{args.output_dir}/gen_table_attacked_meta.json"
concat_gen_table_path = f"{args.output_dir}/gen_table_attacked.jsonl"
else:
concat_meta_path = f"{args.output_dir}/gen_table_meta.json"
concat_gen_table_path = f"{args.output_dir}/gen_table.jsonl"
write_json(args.__dict__, concat_meta_path, indent=4)
gen_table_concated_lst = [ex for ex in gen_table_concated_ds]
write_jsonlines(gen_table_concated_lst, concat_gen_table_path)
else:
gen_table_concated_ds = gen_table_ds
###########################################################################
# Additional args setup
###########################################################################
# if target_T is not specified, use max_new_tokens (which will be in the reloaded gen metadata)
# and potentially overwritten by the concat logic above
if args.target_T == 0:
args.target_T = args.max_new_tokens
# storing slurm info to allow auditing logfiles
# note this is set after the metadata check to ignore overwriting
args.SLURM_JOB_ID = os.getenv("SLURM_JOB_ID")
args.SLURM_ARRAY_JOB_ID = os.getenv("SLURM_ARRAY_JOB_ID")
args.SLURM_ARRAY_TASK_ID = os.getenv("SLURM_ARRAY_TASK_ID")
###########################################################################
# Start logging, we wait to do this until after loading the generations
# so that we can log the args used to generate them unioned with the
# cmdline args
###########################################################################
if args.wandb:
# start a new wandb run to track this experiment, will send data to it
run = wandb.init(
# set the wandb project where this run will be logged
project=args.wandb_project,
entity=args.wandb_entity,
name=f"{args.run_name}",
# track hyperparameters and run metadata
config=args,
tags=args.wandb_tags,
)
###########################################################################
# Perplexity (PPL) evaluation
# NOTE: basically requires a model on gpu, or is extremely slow
###########################################################################
if "ppl" in args.evaluation_metrics:
assert args.oracle_model_name_or_path, "PPL metric requires oracle model."
# Load the oracle model for PPL measurement
oracle_model, oracle_tokenizer, _ = load_oracle_model(args)
# construct the collator
data_collator = DataCollatorWithPadding(
tokenizer=oracle_tokenizer, padding=True, pad_to_multiple_of=8
)
# construct fluency/ppl partial
evaluate_ppl_partial = partial(
evaluate_ppl,
oracle_model_name=args.oracle_model_name_or_path,
oracle_model=oracle_model,
oracle_tokenizer=oracle_tokenizer,
data_collator=data_collator,
)
print(f"Computing metrics on model generations: {gen_table_concated_ds}")
gen_table_w_ppl_ds = gen_table_concated_ds.map(
evaluate_ppl_partial,
batched=True,
batch_size=args.ppl_batch_size,
load_from_cache_file=False,
keep_in_memory=True,
)
# clear the model just for fun
oracle_model = oracle_model.to(torch.device("cpu"))
del oracle_model
else:
gen_table_w_ppl_ds = gen_table_concated_ds
###########################################################################
# Cheap to load, and required for all detectors so load it first
watermark_detector = load_detector(args)
# Map setup for all dataset operations:
map_setup = dict(batched=False, load_from_cache_file=False)
###########################################################################
# z-score evaluation
# NOTE: requires a gpu because if original source of watermark randomness,
# RNG, is gpu based, then detector should be on gpu as well
###########################################################################
if "z-score" in args.evaluation_metrics:
# set up the partial
compute_z_scores_partial = partial(
compute_z_scores,
watermark_detector=watermark_detector,
args=args,
)
gen_table_w_zscore_ds = gen_table_w_ppl_ds.map(
compute_z_scores_partial, **map_setup, desc="Computing z-scores"
)
else:
gen_table_w_zscore_ds = gen_table_w_ppl_ds
###########################################################################
# Windowed z-score evaluation
###########################################################################
if "windowed-z-score" in args.evaluation_metrics:
# set up the windowed partial
compute_windowed_z_scores_partial = partial(
compute_windowed_z_scores,
watermark_detector=watermark_detector,
args=args,
)
gen_table_w_windowed_zscore_ds = gen_table_w_zscore_ds.map(
compute_windowed_z_scores_partial, **map_setup, desc="Computing windowed z-scores"
)
else:
gen_table_w_windowed_zscore_ds = gen_table_w_zscore_ds
###########################################################################
# run-len-chisqrd evaluation
###########################################################################
if "run-len-chisqrd" in args.evaluation_metrics:
assert "w_wm_output_green_token_mask" in gen_table_w_windowed_zscore_ds.column_names, (
f"Currently, run-len-chisqrd metric requires the green token masks to be computed previously "
f"by one of the z-score metrics."
)
# this ^ is unused currently, but we will need it to remove the assert condition above
# set up the run len chisqrd partial
compute_run_len_chisqrd_partial = partial(
compute_run_len_chsqrd_stats,
watermark_detector=watermark_detector,
args=args,
)
gen_table_w_run_len_chisqrd_ds = gen_table_w_windowed_zscore_ds.map(
compute_run_len_chisqrd_partial, **map_setup, desc="Computing runlength tests"
)
else:
gen_table_w_run_len_chisqrd_ds = gen_table_w_windowed_zscore_ds
###########################################################################
# Diversity and Repetition evaluation
###########################################################################
if "repetition" in args.evaluation_metrics or "diversity" in args.evaluation_metrics:
# set up the partial
compute_repetition_partial = partial(
compute_repetition_diversity,
include_repetition=("repetition" in args.evaluation_metrics),
include_diversity=("diversity" in args.evaluation_metrics),
)
gen_table_w_repetition_ds = gen_table_w_run_len_chisqrd_ds.map(
compute_repetition_partial, **map_setup, desc="Computing text repetition and diversity"
)
else:
gen_table_w_repetition_ds = gen_table_w_run_len_chisqrd_ds
###########################################################################
# P-SP evaluation
###########################################################################
if "p-sp" in args.evaluation_metrics:
print(f"Loading the P-SP model and computing P-SP")
gen_table_w_p_sp_ds = compute_p_sp(gen_table_w_repetition_ds)
else:
gen_table_w_p_sp_ds = gen_table_w_repetition_ds
###########################################################################
# Coherence evaluation
###########################################################################
if "coherence" in args.evaluation_metrics:
print(f"Computing coherence")
gen_table_w_coherence_ds = compute_coherence(gen_table_w_p_sp_ds)
else:
gen_table_w_coherence_ds = gen_table_w_p_sp_ds
###########################################################################
# Mauve evaluation
###########################################################################
if "mauve" in args.evaluation_metrics:
print(f"Computing mauve")
gen_table_w_mauve_ds = compute_mauve(gen_table_w_coherence_ds)
else:
gen_table_w_mauve_ds = gen_table_w_coherence_ds
###########################################################################
# Retrieval detection
###########################################################################
if "detect-retrieval" in args.evaluation_metrics:
print(f"Computing detect retrieval")
gen_table_w_detect_retrieval_ds = compute_detect_retrieval(gen_table_w_mauve_ds, args=args)
else:
gen_table_w_detect_retrieval_ds = gen_table_w_mauve_ds
if "prefix_length" in gen_table_w_detect_retrieval_ds.features:
if "no_wm_output_retrieval_score" in gen_table_w_detect_retrieval_ds.features:
print("Avg scores at each prefix length for no_wm_output:")
print(
gen_table_w_detect_retrieval_ds.to_pandas()
.groupby("prefix_length")["no_wm_output_retrieval_score"]
.describe()
)
if "w_wm_output_retrieval_score" in gen_table_w_detect_retrieval_ds.features:
print("Avg scores at each prefix length for w_wm_output:")
print(
gen_table_w_detect_retrieval_ds.to_pandas()
.groupby("prefix_length")["w_wm_output_retrieval_score"]
.describe()
)
if "w_wm_output_attacked_retrieval_score" in gen_table_w_detect_retrieval_ds.features:
print("Avg scores at each prefix length for no_wm_output_attacked:")
print(
gen_table_w_detect_retrieval_ds.to_pandas()
.groupby("prefix_length")["w_wm_output_attacked_retrieval_score"]
.describe()
)
###########################################################################
# Detectgpt detection
###########################################################################
if "detectgpt" in args.evaluation_metrics:
assert args.evaluation_metrics == ["detectgpt"], (
f"Detectgpt must be run separately from other metrics. "
f"Found: {args.evaluation_metrics}. "
)
# check that the right score column exists
assert any(
["detectgpt_score" in col for col in gen_table_w_detect_retrieval_ds.column_names]
), (
f"Detectgpt metric requires the detectgpt_score column to be computed previously "
f"but no such cols exist in this file."
)
print(
f"Evaluating detectgpt by simply computing ROC-AUC metrics on the scores that already exist"
)
gen_table_w_metrics_ds = gen_table_w_detect_retrieval_ds
# if we loaded an attack file, since detect gpt only outputs a baseline score col
# and a no_wm_output score col (which is implcitly the attack col if the file was attacked)
# we need to add the attacked score col to the dataset, and remove the no_wm score col
if loaded_attacked:
for suff in ["100_d", "100_z"]:
gen_table_w_metrics_ds = gen_table_w_metrics_ds.add_column(
f"w_wm_output_attacked_detectgpt_score_{suff}",
gen_table_w_metrics_ds[f"no_wm_output_detectgpt_score_{suff}"],
)
gen_table_w_metrics_ds = gen_table_w_metrics_ds.remove_columns(
[f"no_wm_output_detectgpt_score_{suff}"]
)
else:
###########################################################################
# Write the final dataset out to disk in jsonl format
# with the metrics added
###########################################################################
# last applied metric, NOTE which will of course change as more are added
gen_table_w_metrics_ds = gen_table_w_detect_retrieval_ds
# write the metadata file, which is a union of the previous metadata
# and the current cmdline args
write_json(args.__dict__, metrics_meta_path, indent=4)
gen_table_w_metrics_lst = [ex for ex in gen_table_w_metrics_ds]
write_jsonlines(gen_table_w_metrics_lst, gen_table_w_metrics_path)
###########################################################################
# Log the metric series to wandb
###########################################################################
# log the metrics to wandb
if args.wandb:
# find cols that should be logged in a table
tabular_column_types = ["string", "bool"]
tabular_column_names = [
name
for name, _ in filter(
lambda tup: tup[1].dtype in tabular_column_types,
gen_table_w_metrics_ds.features.items(),
)
]
# the rest should be logged as series
series_column_names = [
name
for name, _ in filter(
lambda tup: tup[1].dtype not in tabular_column_types,
gen_table_w_metrics_ds.features.items(),
)
]
for metric_name in series_column_names:
# summarize series metrics as mean by default
wandb.define_metric(metric_name, summary="mean")
if args.log_raw_series:
# log the raw series
for example in tqdm(
gen_table_w_metrics_ds.remove_columns(tabular_column_names),
desc="Logging series metrics to wandb",
):
run.log(example)
if args.log_raw_tabular:
# log the raw tabular data
# but also include the dataset index as a column
series_column_names.remove("idx")
table = wandb.Table(
dataframe=gen_table_w_metrics_ds.remove_columns(series_column_names).to_pandas()
)
run.log({"output_table": table})
###########################################################################
# Filter rows, then log means to wandb
###########################################################################
assert (
args.target_T - args.lower_tolerance_T
) >= 0, "target_T - lower_tolerance_T must be >= 0"
target_T = args.target_T
lower_tolerance = args.lower_tolerance_T
upper_tolerance = args.upper_tolerance_T
filtered_table = gen_table_w_metrics_ds.to_pandas() # explictly convert lists
for col in args.filter_by_columns:
length_col_name = infer_length_column(col, filtered_table, args=args)
filtered_table = filter_text_col_length(
filtered_table,
text_col_name=length_col_name,
count_suffix="",
upper_T=target_T + upper_tolerance,
lower_T=target_T - lower_tolerance,
)
# Save filtered mean values:
for metric_name in series_column_names:
filtered_name = f"f_{target_T}p{upper_tolerance}m{lower_tolerance}_{metric_name}"
try:
run.summary[f"{filtered_name}_mean"] = filtered_table[metric_name].mean()
run.summary[f"{filtered_name}_std"] = filtered_table[metric_name].std()
except TypeError:
two_dim_mean = filtered_table[metric_name].apply(np.mean).mean()
###########################################################################
# Compute ROC-AUC and send to wandb
###########################################################################
try:
test_stats = args.roc_test_stat
if isinstance(test_stats, str):
test_stats = [test_stats]
for test_stat in test_stats:
for attacked in [True, False]:
try:
roc_auc, fpr, tpr, thresholds, tpr_at_X_fpr = _roc_metrics_for_wandb(
filtered_table, test_stat, attacked=attacked
)
run.summary[
f"{'attacked_' if attacked else ''}{test_stat}_roc_auc"
] = roc_auc
run.summary[
f"{'attacked_' if attacked else ''}{test_stat}_tpr_at_X_fpr"
] = tpr_at_X_fpr
# for tp, fp, thr in tqdm(
# zip(tpr, fpr, thresholds), desc="Logging ROC curve"
# ):
# run.log(
# {
# f"{'attacked_' if attacked else ''}{test_stat}_fpr": fp,
# f"{'attacked_' if attacked else ''}{test_stat}_tpr": tp,
# f"{'attacked_' if attacked else ''}thr": thr,
# }
# )
data = [[x, y] for (x, y) in zip(fpr, tpr)]
table = wandb.Table(data=data, columns=["fpr", "tpr"])
run.log(
{
f"{'attacked_' if attacked else ''}{test_stat}": wandb.plot.line(
table,
"fpr",
"tpr",
title=f"ROC ({test_stat}{',attacked' if attacked else ',clean'})",
)
}
)
print(f"Successfully logged ROC-AUC metrics for {test_stat}.")
except Exception as e:
if args.verbose:
print(e)
print(
f"Failed to log ROC-AUC metrics for {'attacked output' if attacked else ''} {test_stat}."
f"Metric probably was not computed and or attack col not present."
)
except Exception as e:
if args.verbose:
print(f"Exception: {e}")
print(
f"Failed to log ROC-AUC metrics. ",
f"Make sure the test statistic required for detection ({test_stat}) has been computed!",
)
################################################################################
# NOTE we do that ^^^ basic ROC logic first because it's faster
# as well as the manual prefix lengths at T logic bc that's also faster
################################################################################
# Handle z @ T but for the retrieval and detectgpt scores that are evaluated
# manually at each prefix length. Use groupby to compute the mean and std
# for each prefix length for any of the feats that have retrieval_score in them,
# then log those pairs to wandb.
at_T_df = gen_table_w_metrics_ds.to_pandas()
for name, feat in gen_table_w_metrics_ds.features.items():
if "retrieval_score" in name and "prefix_length" in at_T_df.columns:
# compute the mean and std for each prefix length
# and log those pairs to wandb
df_view = at_T_df.groupby("prefix_length")[name].describe()[["mean", "std"]]
T_indices = df_view.index
# for idx, (mean, std) in df_view.iterrows():
# run.log(data={f"{name}_mean": mean, f"{name}_std": std, "idx_T": idx})
# log this triple as a table instead like the ROC curve above
# where the first two are plotted and the third is the x axis
data = [[x, y, z] for x, (y, z) in df_view.iterrows()]
table = wandb.Table(data=data, columns=["idx_T", "mean", "std"])
# compute stderr from std
table.add_column(
"stderr",
[
std / np.sqrt(len(at_T_df[at_T_df["prefix_length"] == idx]))
for idx, std in zip(T_indices, df_view["std"])
],
)
# first log mean
run.log({f"{name}": wandb.plot.line(table, "idx_T", "mean", title=f"{name} mean")})
# then log std err
run.log(
{
f"{name}_stderr": wandb.plot.line(
table, "idx_T", "stderr", title=f"{name} stderr"
)
}
)
# also compute an AUC at each prefix len idx by treating the name col as the positives
# and the baseline_completion_retrieval_score as the negatives
# then log those pairs to wandb
if name != "baseline_completion_retrieval_score":
pos_negs_at_T = at_T_df.groupby("prefix_length")[
[name, "baseline_completion_retrieval_score"]
]
# auc_at_T = []
# tpr_at_X_fpr = []
all_aucs, all_tpr_at_X_fpr = [], []
for idx, sub_df in pos_negs_at_T:
pos = sub_df[name]
neg = sub_df["baseline_completion_retrieval_score"]
# convert to arrays and remove nans
pos = pos.to_numpy()[~np.isnan(pos.to_numpy())]
neg = neg.to_numpy()[~np.isnan(neg.to_numpy())]
fpr, tpr, thresholds = metrics.roc_curve(
np.concatenate([np.ones_like(pos), np.zeros_like(neg)]), # labels
np.concatenate([pos, neg]), # scores
pos_label=1,
)
auc = metrics.auc(fpr, tpr)
try:
tpr_at_X_fpr = tpr[np.where(fpr < 1e-3)[0][-1]]
except IndexError:
tpr_at_X_fpr = float("NaN")
all_aucs.append(auc)
all_tpr_at_X_fpr.append(tpr_at_X_fpr)
# run.log(data={f"{name}_auc_at_T": auc, "idx_T": idx})
# log this triple as a table instead like the AUC and tpr at X fpr below
# where the first two are plotted and the third is the x axis
data = [
[x, y, z] for x, (y, z) in zip(T_indices, zip(all_aucs, all_tpr_at_X_fpr))
]
table = wandb.Table(data=data, columns=["idx_T", "aucs", "tpr_at"])
run.log(
{
f"{name}_aucs": wandb.plot.line(
table, "idx_T", "aucs", title=f"{name} aucs"
)
}
)
run.log(
{
f"{name}_tpr_at": wandb.plot.line(
table, "idx_T", "tpr_at", title=f"{name} tpr_at"
)
}
)
elif "detectgpt_score" in name and "prefix_length" in at_T_df.columns:
# this covers detectgpt_score_100_d and variants
# compute the mean and std for each prefix length
# and log those pairs to wandb
df_view = at_T_df.groupby("prefix_length")[name].describe()[["mean", "std"]]
T_indices = df_view.index
# for idx, (mean, std) in df_view.iterrows():
# run.log(data={f"{name}_mean": mean, f"{name}_std": std, "idx_T": idx})
# log this triple as a table instead like the ROC curve above
# where the first two are plotted and the third is the x axis
data = [[x, y, z] for x, (y, z) in df_view.iterrows()]
table = wandb.Table(data=data, columns=["idx_T", "mean", "std"])
# compute stderr from std
table.add_column(
"stderr",
[
std / np.sqrt(len(at_T_df[at_T_df["prefix_length"] == idx]))
for idx, std in zip(T_indices, df_view["std"])
],
)
# first log mean
run.log({f"{name}": wandb.plot.line(table, "idx_T", "mean", title=f"{name} mean")})
# then log std err
run.log(
{
f"{name}_stderr": wandb.plot.line(
table, "idx_T", "stderr", title=f"{name} stderr"
)
}
)
# also compute an AUC at each prefix len idx by treating the name col as the positives
# and the baseline_completion_retrieval_score as the negatives
# then log those pairs to wandb
if "baseline_completion_detectgpt_score" not in name:
# check which suffix this is in ["_100_d", "_100_z"]
# and use that to set the baseline/falst col
if name.endswith("_100_d"):
baseline_col = "baseline_completion_detectgpt_score_100_d"
elif name.endswith("_100_z"):
baseline_col = "baseline_completion_detectgpt_score_100_z"
pos_negs_at_T = at_T_df.groupby("prefix_length")[[name, baseline_col]]
# auc_at_T = []
# tpr_at_X_fpr = []
all_aucs, all_tpr_at_X_fpr = [], []
for idx, sub_df in pos_negs_at_T:
pos = sub_df[name]
neg = sub_df[baseline_col]
# convert to arrays and remove nans
pos = pos.to_numpy()[~np.isnan(pos.to_numpy())]
neg = neg.to_numpy()[~np.isnan(neg.to_numpy())]
fpr, tpr, thresholds = metrics.roc_curve(
np.concatenate([np.ones_like(pos), np.zeros_like(neg)]), # labels
np.concatenate([pos, neg]), # scores
pos_label=1,
)
auc = metrics.auc(fpr, tpr)
try:
tpr_at_X_fpr = tpr[np.where(fpr < 1e-3)[0][-1]]
except IndexError:
tpr_at_X_fpr = float("NaN")
all_aucs.append(auc)
all_tpr_at_X_fpr.append(tpr_at_X_fpr)
# run.log(data={f"{name}_auc_at_T": auc, "idx_T": idx})
# log this triple as a table instead like the AUC and tpr at X fpr below
# where the first two are plotted and the third is the x axis
data = [
[x, y, z] for x, (y, z) in zip(T_indices, zip(all_aucs, all_tpr_at_X_fpr))
]
table = wandb.Table(data=data, columns=["idx_T", "aucs", "tpr_at"])
run.log(
{
f"{name}_aucs": wandb.plot.line(
table, "idx_T", "aucs", title=f"{name} aucs"
)
}
)
run.log(
{
f"{name}_tpr_at": wandb.plot.line(
table, "idx_T", "tpr_at", title=f"{name} tpr_at"
)
}
)
###########################################################################
# Compute our @ T detection metrics and send to wandb
###########################################################################
# Merge z_at_T and other sequence metrics so they can be shown in wandb:
for name, feat in gen_table_w_metrics_ds.features.items():
if isinstance(feat, Sequence):
max_feat_seq_len = max([len(l) for l in gen_table_w_metrics_ds[name]])
merging_seq = np.zeros(max_feat_seq_len)
counts = np.zeros(max_feat_seq_len)
proto_variance = np.zeros(max_feat_seq_len)
for entry in gen_table_w_metrics_ds[name]:
len_seq = len(entry)
delta = entry * counts[:len_seq] - merging_seq[:len_seq]
# Accumulate ragged sum over entries:
counts[:len_seq] += 1
merging_seq[:len_seq] += entry[: len(merging_seq)]
# Compute ragged, running variance via Welford:
gamma = entry * counts[:len_seq] - merging_seq[:len_seq]
proto_variance[:len_seq] += (delta / counts[:len_seq]) * (
gamma / counts[:len_seq]
)
mask = counts != 0
averaged_seq = merging_seq.copy()
averaged_seq[mask] /= counts
averaged_seq[~mask] = float("NaN")
seq_stderr = proto_variance.copy()
seq_stderr[counts > 1] = np.sqrt(
proto_variance[counts > 1] / (counts[counts > 1] - 1)
) / np.sqrt(counts[counts > 1])
seq_stderr[counts <= 1] = float("NaN")
# for idx, (avg, stderr) in enumerate(zip(averaged_seq[mask], seq_stderr[mask])):
# run.log(data={f"{name}_avg": avg, f"{name}_stderr": stderr, "idx_T": idx})
# log this triple as a table instead like the ROC curve above
# where the first two are plotted and the third is the x axis
data = [
[x, y, z]
for (x, y, z) in zip(
averaged_seq[mask], seq_stderr[mask], range(len(averaged_seq[mask]))
)
]
table = wandb.Table(data=data, columns=["avg", "stderr", "idx_T"])
# first plot avg
run.log({f"{name}": wandb.plot.line(table, "idx_T", "avg", title=f"{name} avg")})
# then plot stderr
run.log(
{
f"{name}_stderr": wandb.plot.line(
table, "idx_T", "stderr", title=f"{name} stderr"
)
}
)
# Compute AUC_at_T
# For now we'll just do a dumb loop over scipy.roc_curve, but this could be batched
test_stats = args.roc_test_stat
if isinstance(test_stats, str):
test_stats = [test_stats]
for test_stat in test_stats:
for attacked in [True, False]:
base_col = f"baseline_completion_{test_stat}_at_T"
w_wm_col = f"w_wm_output{'_attacked' if attacked else ''}_{test_stat}_at_T"
name = f"w_wm{'_attacked' if attacked else ''}_{test_stat}_at_T"
if w_wm_col in gen_table_w_metrics_ds.features.keys(): # metric was computed
print(f"Computing AUC at T for {name}.")
max_length = min(
max([len(l) for l in gen_table_w_metrics_ds[base_col]]),
max([len(l) for l in gen_table_w_metrics_ds[w_wm_col]]),
)
all_aucs, all_tpr_at_X_fpr = [], []
for T in range(1, max_length):
w_wm_stats = np.array(
[t[T] for t in gen_table_w_metrics_ds[w_wm_col] if len(t) > T]
)
baseline_stats = np.array(
[t[T] for t in gen_table_w_metrics_ds[base_col] if len(t) > T]
)[: len(w_wm_stats)]
all_scores = np.concatenate([baseline_stats, w_wm_stats])
baseline_labels = np.zeros_like(baseline_stats)
attacked_labels = np.ones_like(w_wm_stats)
all_labels = np.concatenate([baseline_labels, attacked_labels])
if len(np.unique(all_labels)) < 2:
roc_auc = float("NaN")
tpr_at_X_fpr = float("NaN")
else:
fpr, tpr, thresholds = metrics.roc_curve(
all_labels, all_scores, pos_label=1
)
roc_auc = metrics.auc(fpr, tpr)
try:
tpr_at_X_fpr = tpr[np.where(fpr < 1e-3)[0][-1]]
except IndexError:
tpr_at_X_fpr = float("NaN")
all_aucs.append(roc_auc)
all_tpr_at_X_fpr.append(tpr_at_X_fpr)
# for idx, (aucs, tpr_at) in enumerate(zip(all_aucs, all_tpr_at_X_fpr)):
# run.log(data={f"{name}_aucs": aucs, f"{name}_tpr_at": tpr_at, "idx_T": idx})
# log these two separately using a table
data = [
[x, y, z]
for (x, y, z) in zip(all_aucs, all_tpr_at_X_fpr, range(len(all_aucs)))
]
table = wandb.Table(data=data, columns=["aucs", "tpr_at", "idx_T"])
run.log(
{
f"{name}_aucs": wandb.plot.line(
table, "idx_T", "aucs", title=f"{name} aucs"
)
}
)
run.log(
{
f"{name}_tpr_at": wandb.plot.line(
table, "idx_T", "tpr_at", title=f"{name} tpr_at"
)
}
)
# finish the wandb run
run.finish()
return
def _roc_metrics_for_wandb(
gen_table_ds, test_stat="z_score", prefix="", attacked=False, remove_nan=True
):
# In theory, we actually should be filtering the attacked column too, but we know these
# end up very short sometimes. So, to make sure the logic works, we just
# filter for any rows where the test metrics are NaN and note the damage
baseline_col_name = f"{prefix}baseline_completion_{test_stat}"
if "retrieval" in test_stat:
if attacked:
w_wm_col_name = f"{prefix}w_wm_output_attacked_retrieval_score"
else:
w_wm_col_name = f"{prefix}{args.retrieval_db_column}_retrieval_score"
elif "detectgpt" in test_stat:
if attacked:
w_wm_col_name = f"{prefix}w_wm_output_attacked_{test_stat}"
else:
w_wm_col_name = f"{prefix}no_wm_output_{test_stat}"
else:
w_wm_col_name = f"{prefix}w_wm_output{'_attacked' if attacked else ''}_{test_stat}"
# drop nans in either column
if remove_nan:
orig_length = len(gen_table_ds)
gen_table_ds = gen_table_ds.dropna(subset=[baseline_col_name, w_wm_col_name])
if orig_length != len(gen_table_ds):
print(
f"NOTE: During ROC calculation, dropped {orig_length - len(gen_table_ds)} rows due to NaNs in {baseline_col_name} or {w_wm_col_name}"
)
baseline_stats = gen_table_ds[baseline_col_name].values
w_wm_stats = gen_table_ds[w_wm_col_name].values
all_scores = np.concatenate([baseline_stats, w_wm_stats])
baseline_labels = np.zeros_like(baseline_stats)
attacked_labels = np.ones_like(w_wm_stats)
all_labels = np.concatenate([baseline_labels, attacked_labels])
fpr, tpr, thresholds = metrics.roc_curve(all_labels, all_scores, pos_label=1)
roc_auc = metrics.auc(fpr, tpr)
try:
tpr_at_X_fpr = tpr[np.where(fpr < 1e-3)[0][-1]]
except IndexError:
tpr_at_X_fpr = float("NaN")
return roc_auc, fpr, tpr, thresholds, tpr_at_X_fpr
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run evaluation pipeline for watermark detection")
parser.add_argument(
"--evaluation_metrics",
type=str,
default="all",
help="Comma separated list of columns to remove from the dataset before generation.",
)
parser.add_argument(
"--compute_scores_at_T",
type=str2bool,
default=True,
help="Whether to compute (applicable) metrics at each T index in the output/text columns.",
)
parser.add_argument(
"--overwrite_args",
type=str2bool,
default=False,
help="Whether to overwrite the shared args in the metadata file with the current, runtime args.",
)
parser.add_argument(
"--oracle_model_name_or_path",
type=str,
default="facebook/opt-6.7b",
help="Oracle model, path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--load_fp16",
type=str2bool,
default=None,
help=(
"Whether to run model (for ppl) in float16 precsion, note, will overwrite error as a reminder that "
"generation was run in other mode, even though there's no hard requirement that these match."
),
)
parser.add_argument(
"--ppl_batch_size",
type=int,
default=1,
help="Batch size for ppl eval.",
)
parser.add_argument(
"--seeding_scheme",
type=Union[str, NoneType],
default=None,
help="Seeding scheme to use to generate the greenlists at each generation and verification step.",
)
parser.add_argument(
"--gamma",
type=Union[float, NoneType],
default=None,
help="The fraction of the vocabulary to partition into the greenlist at each generation and verification step.",
)
parser.add_argument(
"--normalizers",
type=Union[str, NoneType],
default=None,
help="Single or comma separated list of the preprocessors/normalizer names to use when performing watermark detection.",
)
parser.add_argument(
"--ignore_repeated_ngrams",
type=str2bool,
default=False,
help="Whether to use the detection method that only counts each unqiue bigram once as either a green or red hit.",
)
parser.add_argument(
"--detection_z_threshold",
type=float,
default=4.0,
help="The test statistic threshold for the detection hypothesis test.",
)
parser.add_argument(
"--return_green_token_mask",
type=str2bool,
default=True,
help="Whether to return the mask marking which tokens are green from the watermark detector.",
)
parser.add_argument(
"--window_settings",
type=str,
default="20,40,max", # can also be "20" or "20,40,max"
help="Comma separated list of window sizes to use for watermark detection. Only used if 'windowed-z-score' is in the evaluation metrics list.",
)
parser.add_argument(
"--run_len_chisqrd_variant",
type=str,
default="F_succ_T_runs",
choices=["F_succ_T_runs", "T_and_F_runs"],
help="The variant of the run length test to use for watermark detection.",
)
parser.add_argument(
"--run_len_chisqrd_bin_spec",
type=str,
default="max_plus_1",
choices=["max", "max_plus_1"],
help="The binning specification to use for the run length test.",
)
parser.add_argument(
"--run_len_chisqrd_mask_zeros",
type=str2bool,
default=True,
help="Whether to mask zeros in the run length test.",
)
parser.add_argument(
"--run_len_chisqrd_mask_leading_bins",
type=int,
default=0,
help="The number of leading bins to mask in the run length test.",
)
parser.add_argument(
"--run_len_chisqrd_lambda",
type=str,
default="pearson",
choices=["pearson", "g_test", "cressie_read"],
help="The lambda_ param to use for the run length test.",
)
parser.add_argument(
"--retrieval_technique",
type=str,
default="bm25",
choices=["bm25", "sim"],
help="The retrieval technique to use for retrieval detection.",
)
parser.add_argument(
"--retrieval_db_column",
type=str,
default="no_wm_output",
choices=["w_wm_output", "no_wm_output"],
help="The column to populate the db/index with use for retrieval detection.",
)
parser.add_argument(
"--retrieval_db_load_all_prefixes",
type=str2bool,
default=False,
help="Whether to load all prefixes into the retrieval db, or just the longest for each unique entry.",
)
parser.add_argument(
"--roc_test_stat",
type=str,
default="all",
help="The comma separated list of test statistics to use for the ROC-AUC metric.",
)
parser.add_argument(
"--target_T",
type=int,
default=0,
help="The target generation length to use when dropping rows before ROC-AUC evaluation.",
)
parser.add_argument(
"--lower_tolerance_T",
type=int,
default=25,
help="The lower tolerance to use when dropping rows before ROC-AUC evaluation.",
)
parser.add_argument(
"--upper_tolerance_T",
type=int,
default=25,
help="The upper tolerance to use when dropping rows before ROC-AUC evaluation.",
)
parser.add_argument(
"--filter_by_columns",
type=str,
default="all",
help="The comma separated list of columns to filter by before ROC-AUC evaluation.",
)
parser.add_argument(
"--wandb",
type=str2bool,
default=False,
help="Whether to log to wandb.",
)
parser.add_argument(
"--wandb_project",
type=str,
default="lm-watermarking",
help="The name of the wandb project.",
)
parser.add_argument(
"--wandb_entity",
type=str,
default="jwkirchenbauer",
help="The wandb entity/user for the project.",
)
parser.add_argument(
"--wandb_tags",
type=str,
default="",
help="The comma separated list of tags to add to the wandb run.",
)
parser.add_argument(
"--run_name",
type=str,
default="",
help="The unique name for the run.",
)
parser.add_argument(
"--input_dir",
type=str,
default="./input",
help="The directory containing the input files.",
)
parser.add_argument(
"--output_dir",
type=str,
default="",
help=(
"The directory in which to write out the dataset after adding the metrics. "
"If not specified, will use the input_dir. Note, if the output_dir already "
"contains the metric-enriched file, it will be overwritten :/"
),
)
parser.add_argument(
"--overwrite_output_file",
type=str2bool,
default=False,
help="Whether to overwrite the output file if it already exists.",
)
parser.add_argument(
"--limit_rows",
type=int,
default=-1,
help="The number of rows to limit the dataset to. Useful for debugging.",
)
parser.add_argument(
"--concat_rows",
type=int,
default=0,
help="The number of rows to concatenate into a single row. Result is a mangled dataset, be careful",
)
parser.add_argument(
"--shuffle_before_concat",
type=str2bool,
default=False,
help="Whether to shuffle the dataset before concatenating rows.",
)
parser.add_argument(
"--verbose",
type=str2bool,
default=None,
help="Whether to verbosely print things here and there.",
)
parser.add_argument(
"--log_raw_series",
type=str2bool,
default=True,
help="Whether to log the raw series metric data to wandb.",
)
parser.add_argument(
"--log_raw_tabular",
type=str2bool,
default=True,
help="Whether to log the raw tabular metric data to wandb.",
)
args = parser.parse_args()
###########################################################################
# Argument validation and conditional setting
###########################################################################
# convert evaluation metrics to list
assert args.evaluation_metrics, "evaluation_metrics list must be specified"
args.evaluation_metrics = args.evaluation_metrics.split(",")
if args.evaluation_metrics == ["all"]:
all_metrics = SUPPORTED_METRICS
all_metrics.remove("ppl") # by default not running this anymore
all_metrics.remove("detectgpt") # can't run this with other metrics
args.evaluation_metrics = all_metrics
if args.evaluation_metrics == ["all_w_ppl"]:
args.evaluation_metrics = SUPPORTED_METRICS
# if no output dir specified, use the input dir
if args.output_dir == "":
args.output_dir = args.input_dir
# check limit_rows
assert (args.limit_rows == -1) or (
(args.limit_rows > 0) and isinstance(args.limit_rows, int)
), "limit_rows must be -1 or > 0"
# convert normalizers to list
if args.normalizers:
args.normalizers = args.normalizers.split(",")
else:
args.normalizers = []
# convert roc_test_stat to list
args.roc_test_stat = args.roc_test_stat.split(",")
if args.roc_test_stat == ["all"]:
args.roc_test_stat = ROC_TEST_STAT_SUFFIXES
# convert filter_by_columns to list
args.filter_by_columns = args.filter_by_columns.split(",")
if args.filter_by_columns == ["all"]:
args.filter_by_columns = FILTER_BY_COLUMNS
# split wandb tags
if args.wandb_tags != "":
args.wandb_tags = args.wandb_tags.split(",")
else:
args.wandb_tags = []
# split window settings
args.window_settings = args.window_settings.split(",")
main(args)
|