Spaces:
No application file
No application file
File size: 22,622 Bytes
73f4c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
# coding=utf-8
# Copyright 2023 Authors of "A Watermark for Large Language Models"
# available at https://arxiv.org/abs/2301.10226
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
from functools import partial
from tqdm import tqdm
import wandb
print(f"Current huggingface cache dir: {os.environ['HF_HOME']}")
# HF classses
from transformers import LogitsProcessorList, DataCollatorWithPadding
# better bool flag type for argparse
from utils.submitit import str2bool
# some file i/o helpers
from utils.io import write_jsonlines, write_json
# watermarking functionality
from watermark_processor import WatermarkLogitsProcessor
# generation pipeline helpers
from utils.generation import (
MAX_GENERATIONS,
load_model,
load_hf_dataset,
check_input_lengths,
check_output_lengths,
tokenize_for_generation,
generate,
)
def main(args):
###########################################################################
# Start logging
###########################################################################
# storing slurm info to allow auditing logfiles later
args.SLURM_JOB_ID = os.getenv("SLURM_JOB_ID")
args.SLURM_ARRAY_JOB_ID = os.getenv("SLURM_ARRAY_JOB_ID")
args.SLURM_ARRAY_TASK_ID = os.getenv("SLURM_ARRAY_TASK_ID")
if args.wandb:
# start a new wandb run to track this experiment, will send data to it later
run = wandb.init(
# set the wandb project where this run will be logged
project=args.wandb_project,
entity=args.wandb_entity,
name=f"{args.run_name}",
# track hyperparameters and run metadata
config=args,
tags=args.wandb_tags,
)
###########################################################################
# Create the output dir
###########################################################################
print(f"Output dir for this run: {args.output_dir}")
# notify if exists
if os.path.exists(args.output_dir):
print(f"Output dir for this run already exists!")
print(f"Contents: {sorted(os.listdir(args.output_dir))}")
else:
# create the output dir where run artifacts are stored
os.makedirs(args.output_dir)
###########################################################################
# Load the dataset
###########################################################################
# basic ops like shuffling and select are done in load fn
dataset = load_hf_dataset(args)
###########################################################################
# Instantiate model and tokenizer
###########################################################################
model, tokenizer, device = load_model(args)
###########################################################################
# Configure the prompt construction partial
###########################################################################
# Construct the data filtering/sampling scheme partials
token_kwargs = dict(
hf_model_name=args.model_name_or_path,
tokenizer=tokenizer,
args=args,
)
if args.input_truncation_strategy == "prompt_length":
token_kwargs.update(dict(min_prompt_tokens=args.min_prompt_tokens))
elif args.input_truncation_strategy == "completion_length":
token_kwargs.update(dict(max_new_tokens=args.max_new_tokens))
elif args.input_truncation_strategy == "no_truncation":
# truncate_input_for_prompt is a bool flag, that is set by
# the dataset loading function, semi-redundant, to make sure
# people are very aware of which input data style they are using
assert (
args.truncate_input_for_prompt == False
), "Cannot truncate input for prompt if 'no_truncation' strategy is specified"
pass
else:
ValueError(f"Unknown input truncation strategy {args.input_truncation_strategy}")
tokenize_prompts = partial(tokenize_for_generation, **token_kwargs)
###########################################################################
# Configure the I/O data validation partials
###########################################################################
input_check_kwargs = dict(
min_sample_len=args.min_sample_tokens,
max_input_len=model.config.max_position_embeddings,
max_new_tokens=args.max_new_tokens,
)
if args.input_filtering_strategy == "prompt_length":
input_check_kwargs.update(dict(min_prompt_len=args.min_prompt_tokens, min_completion_len=0))
elif args.input_filtering_strategy == "completion_length":
input_check_kwargs.update(dict(min_prompt_len=0, min_completion_len=args.max_new_tokens))
elif args.input_filtering_strategy == "prompt_and_completion_length":
input_check_kwargs.update(
dict(min_prompt_len=args.min_prompt_tokens, min_completion_len=args.max_new_tokens)
)
elif args.input_filtering_strategy == "no_filter":
input_check_kwargs.update(dict(min_prompt_len=0, min_completion_len=0))
else:
ValueError(f"Unknown input filtering strategy {args.input_filtering_strategy}")
input_check = partial(check_input_lengths, **input_check_kwargs)
if args.output_filtering_strategy == "max_new_tokens":
output_kwargs = dict(min_output_len=args.max_new_tokens)
elif args.output_filtering_strategy == "no_filter":
output_kwargs = dict(min_output_len=0)
else:
ValueError(f"Unknown output filtering strategy {args.output_filtering_strategy}")
output_check = partial(check_output_lengths, **output_kwargs)
###########################################################################
# Construct the watermark processor
###########################################################################
watermark_processor = WatermarkLogitsProcessor(
vocab=list(tokenizer.get_vocab().values()),
gamma=args.gamma,
delta=args.delta,
seeding_scheme=args.seeding_scheme,
store_spike_ents=args.store_spike_ents,
select_green_tokens=True,
)
###########################################################################
# Configure the generation partials
###########################################################################
gen_kwargs = dict(max_new_tokens=args.max_new_tokens)
# FIXME can add typica
if args.use_sampling:
gen_kwargs.update(
dict(
do_sample=True,
top_k=args.top_k,
top_p=args.top_p,
typical_p=args.typical_p,
temperature=args.sampling_temp,
)
)
else:
gen_kwargs.update(dict(num_beams=args.num_beams))
generate_without_watermark = partial(model.generate, **gen_kwargs)
generate_with_watermark = partial(
model.generate, logits_processor=LogitsProcessorList([watermark_processor]), **gen_kwargs
)
# construct the collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding=True, pad_to_multiple_of=8)
generation_partial = partial(
generate,
data_collator=data_collator,
generate_without_watermark=generate_without_watermark,
generate_with_watermark=generate_with_watermark,
watermark_processor=watermark_processor,
tokenizer=tokenizer,
device=device,
args=args,
)
###########################################################################
# Compose the partials to create the pipeline
###########################################################################
# tokenize and truncate the row inputs to create prompts according to the strategy spec'd above
dataset_w_prompts = dataset.map(tokenize_prompts, batched=False)
# filter the rows of the dataset based on length checks for the tokenized prompts and baseline completions
dataset_input_len_filtered = dataset_w_prompts.filter(input_check, batched=False)
# need to remove the input tensor column after this map
# bc it persists between the prompt creation and generation maps
columns_to_remove = args.columns_to_remove + ["input_ids"]
# call the generation partial on each prompt in the dataset
dataset_w_generations = dataset_input_len_filtered.map(
generation_partial,
batched=True,
batch_size=args.generation_batch_size,
remove_columns=columns_to_remove,
)
###########################################################################
# Main loop - actually executes the generation pipeline.
# and accumulates the result rows in a list, assumes list is "small"-ish
# and we aren't accumulating any tensors or other memory hogging artifacts
###########################################################################
processed_examples = []
ds_iterator = iter(dataset_w_generations)
i = 0
total_steps = 0
pbar = tqdm(total=args.min_generations)
while i < args.min_generations:
try:
ex = next(ds_iterator)
total_steps += 1
except StopIteration:
break
if args.verbose:
# log basics to stdout
print(f"#" * 80)
print(f"dataset index: {ex['idx']}")
print(f"orig_sample_length: {ex['orig_sample_length']}")
print(f"prompt_length: {ex['prompt_length']}")
print(f"real_completion_length: {ex['baseline_completion_length']}")
print(f"no_wm_output_length: {ex['no_wm_output_length']}")
print(f"w_wm_output_length: {ex['w_wm_output_length']}")
print(f"\ntruncated_input: ")
print(ex["truncated_input"])
print(f"\nbaseline_completion: ")
print(ex["baseline_completion"])
print(f"\nno_wm_output: ")
print(ex["no_wm_output"])
print(f"\nw_wm_output: ")
print(ex["w_wm_output"])
processed_examples.append(ex)
if output_check(ex):
i += 1
pbar.update(1)
else:
print(
f"\n{i} of {len(processed_examples)} rows were satisfactory so far, {round(i/args.min_generations, 2)} of total.",
f"\nCurrent generation overhead ratio: {round(len(processed_examples)/(i+1), 3)}.",
)
# if using wandb, log progress to wandb
if args.wandb:
run.log(
{
"num_satisfactory_samples": i,
"progress_ratio": i / args.min_generations,
"generation_overhead_ratio": len(processed_examples) / (i + 1),
"total_generated_samples": len(processed_examples),
},
step=total_steps,
)
pbar.close()
print(
f"#" * 80,
f"\nGeneration output length check overhead was num rows processed={len(processed_examples)}",
f"for {args.min_generations} samples. Ratio: {round(len(processed_examples)/args.min_generations, 3)}",
)
if i < args.min_generations:
print(
f"#" * 80,
f"\nWarning, may have run out of data before {args.min_generations} satisfactory samples were generated. ",
f"\nNote, raw dataset limit was {args.limit_indices} rows.",
f"\n{len(processed_examples)} prompt passed input checks and yielded generations, and {i} passed output checks,",
f"\nProgress made: {round(i/args.min_generations, 2)}",
)
###########################################################################
# Generation jsonl dumping
###########################################################################
gen_table_meta_path = f"{args.output_dir}/gen_table_meta.json"
gen_table_path = f"{args.output_dir}/gen_table.jsonl"
safe_gen_table_path = f"{args.output_dir}/gen_table_safe.jsonl"
args.gen_table_already_existed = False
if os.path.exists(gen_table_path):
args.gen_table_already_existed = True
print(f"Found existing generation files at this output dir: {args.output_dir}")
if args.overwrite:
print("Overwriting old generation files.")
gen_table_path = gen_table_path
else:
print(
f"Writing generations at alternate, safe path and exiting. Note! this only works once. "
f"Safe version will get overwritten next time ... "
)
gen_table_path = safe_gen_table_path
gen_table_meta = args.__dict__
gen_table = processed_examples
write_jsonlines(gen_table, gen_table_path)
write_json(gen_table_meta, gen_table_meta_path, indent=4)
# finish the wandb run
if args.wandb:
run.finish()
return # reload in separate script for metric measurement
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Run watermarked huggingface LM generation pipeline"
)
parser.add_argument(
"--model_name_or_path",
type=str,
default="facebook/opt-1.3b",
help="Main model, path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--load_fp16",
type=str2bool,
default=True,
help="Whether to run model in float16 precsion.",
)
parser.add_argument(
"--use_gpu",
type=str2bool,
default=True,
help="Whether to run inference and watermark hashing/seeding/permutation on gpu.",
)
parser.add_argument(
"--dataset_name",
type=str,
default="c4",
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default="realnewslike",
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_split",
type=str,
default="train",
help="The split of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--stream_dataset",
type=str2bool,
default=True,
help="Whether to stream the dataset from the web or download it locally.",
)
parser.add_argument(
"--columns_to_remove",
type=str,
default=None,
help="Comma separated list of columns to remove from the dataset before generation.",
)
parser.add_argument(
"--shuffle_dataset",
type=str2bool,
default=False,
help="Whether to shuffle the dataset before sampling.",
)
parser.add_argument(
"--shuffle_seed",
type=int,
default=1234,
help="The seed to use for dataset shuffle op.",
)
parser.add_argument(
"--shuffle_buffer_size",
type=int,
default=10_000,
help="The buffer size to use for dataset shuffle op - takes n rows first, then shuffles those indices",
)
parser.add_argument(
"--prompt_id",
type=int,
default=0,
help="If the dataset supports multiple instruction prompts, denotes which one to use. 0 is default/no prompt.",
)
parser.add_argument(
"--max_new_tokens",
type=int,
default=100,
help="The number of tokens to generate using the model, and the num tokens removed from real text sample",
)
parser.add_argument(
"--min_prompt_tokens",
type=int,
default=50, # 500
help="The number of examples (first N) to process from the dataset.",
)
parser.add_argument(
"--min_sample_tokens",
type=int,
default=0,
help="The the minimum length of raw prompt samples to consider.",
)
parser.add_argument(
"--limit_indices",
type=int,
default=None,
help="The number of examples (first N) to pull from the dataset, if None, pull all, and then set this arg to the number of rows in the dataset.",
)
parser.add_argument(
"--min_generations",
type=int,
default=500,
help="The minimum number of valid generations according to the output check strat to sample.",
)
parser.add_argument(
"--input_truncation_strategy",
type=str,
default="completion_length",
choices=["no_truncation", "completion_length", "prompt_length"],
help="The strategy to use when tokenizing and truncating raw inputs to make prompts.",
)
parser.add_argument(
"--input_filtering_strategy",
type=str,
default="completion_length",
choices=["no_filter", "completion_length", "prompt_length", "prompt_and_completion_length"],
help="The strategy to use when tokenizing and truncating raw inputs to make prompts.",
)
parser.add_argument(
"--output_filtering_strategy",
type=str,
default="no_filter",
choices=["no_filter", "max_new_tokens"],
help=(
f"The strategy to use when filtering/skipping rows if the model didn't ",
f"generate enough tokens to facilitate analysis.",
),
)
parser.add_argument(
"--use_sampling",
type=str2bool,
default=False,
help=("Whether to perform sampling during generation. (non-greedy decoding)"),
)
parser.add_argument(
"--sampling_temp",
type=float,
default=0.7,
help="The temperature to use when generating using multinom sampling",
)
parser.add_argument(
"--top_k",
type=int,
default=0,
help="The top k to use when generating using top_k version of multinom sampling",
)
parser.add_argument(
"--top_p",
type=float,
default=1.0,
help="The top p to use when generating using top_p version of sampling",
)
parser.add_argument(
"--typical_p",
type=float,
default=1.0,
help="The typical p to use when generating using typical decoding version of multinom sampling",
)
parser.add_argument(
"--num_beams",
type=int,
default=1,
help="The number of beams to use where '1' is no beam search.",
)
parser.add_argument(
"--generation_seed",
type=int,
default=None,
help="Seed for setting the torch rng prior to generation using any decoding scheme with randomness.",
)
parser.add_argument(
"--generation_batch_size",
type=int,
default=4,
help="The batch size to use for generation.",
)
parser.add_argument(
"--seeding_scheme",
type=str,
default="simple_1",
help="The seeding procedure to use for the watermark.",
)
parser.add_argument(
"--gamma",
type=float,
default=0.25,
help="The ratio of tokens to put in the greenlist when splitting the vocabulary",
)
parser.add_argument(
"--delta",
type=float,
default=2.0,
help="The amount of bias (absolute) to add to the logits in the whitelist half of the vocabulary at every step",
)
parser.add_argument(
"--store_spike_ents",
type=str2bool,
default=True,
help=("Whether to store the spike entropies while generating with watermark processor. "),
)
parser.add_argument(
"--verbose",
type=str2bool,
default=False,
help="Whether to log the generations to stdout.",
)
parser.add_argument(
"--wandb",
type=str2bool,
default=False,
help="Whether to log to wandb.",
)
parser.add_argument(
"--wandb_project",
type=str,
default="lm-watermarking",
help="The name of the wandb project.",
)
parser.add_argument(
"--wandb_entity",
type=str,
default="jwkirchenbauer",
help="The wandb entity/user for the project.",
)
parser.add_argument(
"--wandb_tags",
type=str,
default="",
help="The comma separated list of tags to add to the wandb run.",
)
parser.add_argument(
"--run_name",
type=str,
default=None,
help="The unique name for the run.",
)
parser.add_argument(
"--output_dir",
type=str,
default="./output",
help="The unique name for the run.",
)
parser.add_argument(
"--overwrite",
type=str2bool,
default=False,
help="Allow overwriting of old generation files at the same output location.",
)
args = parser.parse_args()
###########################################################################
# Argument validation and conditional setting
###########################################################################
# for removing some columns to save space
args.columns_to_remove = args.columns_to_remove.split(",") if args.columns_to_remove else []
# if decoding scheme is not sampling, then set generation seed to None
# to avoid confusion and calling the torch rng unnecessarily
args.generation_seed = args.generation_seed if args.use_sampling else None
# -1 value for min_generations means no specified minimum
# with the assumption that the
if args.min_generations <= 0:
args.min_generations = MAX_GENERATIONS
print(
f"Warning: min_generations is -1. A hardcoded value of {MAX_GENERATIONS} will be used to limit the generation loop."
)
if args.limit_indices is None:
print("No limit_indices specified, pulling all examples from the dataset.")
else:
print(f"Limiting iteration to {args.limit_indices} examples from the dataset.")
# split wandb tags
if args.wandb_tags != "":
args.wandb_tags = args.wandb_tags.split(",")
else:
args.wandb_tags = []
main(args)
|