File size: 8,120 Bytes
73f4c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from submitit import AutoExecutor
from submitit.helpers import CommandFunction
from itertools import chain
import os
from submitit_utils import ParameterGrid
import argparse

# a debug/dry-run command
dummy_func = CommandFunction(["echo"], verbose=True)

###############################################################################
# Experiment specific command and parameter setup
# (the structure is general, but the values are not)
###############################################################################

base_run_name = None

ROOT_DIR = f'{os.getenv("ROOT_DIR")}'
# OUTPUT_DIR = f'{os.getenv("OUTPUT_DIR")}'
# OUTPUT_DIR = f'{os.getenv("OUTPUT_DIR")}_large_sweep'
# OUTPUT_DIR = f'{os.getenv("OUTPUT_DIR")}_large_sweep_downsize'
# OUTPUT_DIR = f'{os.getenv("OUTPUT_DIR")}_greedy_redo'
OUTPUT_DIR = f'{os.getenv("OUTPUT_DIR")}_greedy_more_gammas'

# starting command/program to which we will append arguments
cmdline_function = CommandFunction(["python"], verbose=True)

# script name
script_name = "run_watermarking.py"

# base args
base_script_args = {
    # "model_name"         :"facebook/opt-2.7b",
    "model_name"         :"facebook/opt-1.3b",
    "dataset_name"       :"c4",
    "dataset_config_name":"realnewslike",
    # "dataset_config_name":"en",
    # "dataset_name": "cml_pile",
    # "dataset_config_name": "all_train_00",
    # "shuffle_dataset"    :"True", # NOTE
    "dynamic_seed"       :"markov_1",
    "store_spike_ents"   :"True",
    # "oracle_model_name"  :"EleutherAI/gpt-j-6B",
    "oracle_model_name"  :"facebook/opt-2.7b",
    "no_wandb"           :"False",
}

# dynamic/hparam args
# i.e. the parameters we would like to cross and sweep over
hparam_sets = [
    # # main sampling sweep, central data
    # {
    #     "min_prompt_tokens": [50],
    #     "max_new_tokens": [200],
    #     "input_truncation_strategy": ["completion_length"],
    #     "input_filtering_strategy": ["prompt_and_completion_length"],
    #     "output_filtering_strategy": ["max_new_tokens"],
    #     "limit_indices": [500],
    #     "bl_logit_bias": [0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 50.0],
    #     "bl_proportion": [0.1, 0.25, 0.5, 0.75, 0.9],
    #     "bl_type": ["soft"],
    #     "num_beams": [1],
    #     "use_sampling": [True],
    #     "sampling_temp": [0.7],
    # },
    # greedy and beams secondary demos
    # {
    #     "min_sample_tokens":[0],
    #     "min_prompt_tokens": [200],
    #     "max_new_tokens": [500],
    #     "all_gas_no_eos": [True],
    #     "input_truncation_strategy": ["prompt_length"],
    #     "input_filtering_strategy": ["prompt_and_completion_length"],
    #     "output_filtering_strategy": ["no_filter"],
    #     "limit_indices": [500],
    #     "bl_logit_bias": [0.1, 0.5, 1.0, 2.0, 5.0, 10.0],
    #     "bl_proportion": [0.5],
    #     "bl_type": ["soft"],
    #     "num_beams": [1],
    #     "use_sampling": [False],
    #     "sampling_temp": [0.0],
    # },
    # {
    #     "min_sample_tokens":[0],
    #     "min_prompt_tokens": [200],
    #     "max_new_tokens": [500],
    #     "all_gas_no_eos": [True],
    #     "no_repeat_ngram_size": [0],
    #     "input_truncation_strategy": ["prompt_length"],
    #     "input_filtering_strategy": ["prompt_and_completion_length"],
    #     "output_filtering_strategy": ["no_filter"],
    #     "limit_indices": [500],
    #     "bl_logit_bias": [0.1, 0.5, 1.0, 2.0, 5.0, 10.0],
    #     "bl_proportion": [0.5],
    #     "bl_type": ["soft"],
    #     "num_beams": [4],
    #     "use_sampling": [False],
    #     "sampling_temp": [0.0],
    # },
    {
        "min_sample_tokens":[0],
        "min_prompt_tokens": [200],
        "max_new_tokens": [500],
        "all_gas_no_eos": [True],
        "no_repeat_ngram_size": [0],
        "input_truncation_strategy": ["prompt_length"],
        "input_filtering_strategy": ["prompt_and_completion_length"],
        "output_filtering_strategy": ["no_filter"],
        "limit_indices": [500],
        "bl_logit_bias": [0.1, 0.5, 1.0, 2.0, 5.0, 10.0],
        # "bl_logit_bias": [2.0, 5.0, 10.0],
        # "bl_proportion": [0.5],
        # "bl_proportion": [0.75],
        "bl_proportion": [0.9],
        "bl_type": ["soft"],
        "num_beams": [8],
        "use_sampling": [False],
        "sampling_temp": [0.0],
    },
    ############
]

# logic to set derived arguments based on existing arguments in the sweep sets
# the unique run name is the canonical example
def add_conditional_params(param_dict):

    # unique_name = f'{base_run_name+"_" if base_run_name else ""}{param_dict.get("model_name")}_{param_dict.get("dataset_name")}_{param_dict.get("dataset_config_name")}'
    unique_name_keys = ["model_name",
                        "bl_type",
                        "dynamic_seed",
                        "bl_proportion",
                        "bl_logit_bias",
                        "num_beams",
                        "use_sampling",
                        "sampling_temp",
                        "dataset_name",
                        "dataset_config_name",
                        "min_prompt_tokens",
                        "max_new_tokens",
                        "input_truncation_strategy",
                        "input_filtering_strategy",
                        "output_filtering_strategy",
                        "limit_indices",
                        "oracle_model_name"]

    unique_name = f'{base_run_name+"_" if base_run_name else ""}{"_".join([str(param_dict.get(k)) for k in unique_name_keys])}'
    unique_name = unique_name.replace("/", "-").replace(".","-")
    param_dict.update({"run_name": unique_name})
    param_dict.update({"output_dir": f'{OUTPUT_DIR}/{param_dict["run_name"]}'})

# Queue up all the arguments
def add_params(param_dicts):
    new_dicts = []
    for i, param_dict in enumerate(param_dicts):
        new_dict = {}

        new_dict.update({script_name : ""}) # This requires parse block change in submitit.core.utils.py L320
        new_dict.update(base_script_args)
        
        new_dict.update(param_dict)
        add_conditional_params(new_dict)

        new_dicts.append(new_dict)
    return new_dicts

###############################################################################
# Generic submitit and slurm workflow
###############################################################################

# set up the executor and sbatch settings
# executor = AutoExecutor(cluster='slurm', folder=f'{ROOT_DIR}/logs/')
# executor = AutoExecutor(cluster='slurm', folder=f'{ROOT_DIR}/logs_large_sweep/')
# executor = AutoExecutor(cluster='slurm', folder=f'{ROOT_DIR}/logs_large_sweep_downsize/')
# executor = AutoExecutor(cluster='slurm', folder=f'{ROOT_DIR}/logs_greedy_redo/')
executor = AutoExecutor(cluster='slurm', folder=f'{ROOT_DIR}/logs_greedy_more_gammas/')

executor.update_parameters(
    stderr_to_stdout=True,
    slurm_name='water',
    # slurm_account='tomg',
    # slurm_qos='very_high',
    # slurm_qos='high',
    slurm_mem= '52gb', 
    slurm_gres='gpu:rtxa6000:1',
    slurm_time='14:00:00',
    slurm_account='scavenger',
    slurm_partition='scavenger',
    slurm_qos='scavenger',
    # slurm_mem= '32gb', 
    # slurm_cpus_per_task=4,
    # slurm_gres='gpu:rtxa5000:1',
    # slurm_time='12:00:00',
)

# cross and line up parameter combinations
arg_dicts = list(chain(*(ParameterGrid(p_set) for p_set in hparam_sets)))

# set params and apply any extra param logic
arg_dicts = add_params(arg_dicts)

if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-d", "--dry_run",
        action="store_true",
        help="just echo the commands to be run",
    )
    args = parser.parse_args()

    # context to make this loop/list comp execute an array job 
    # rather than individual jobs
    with executor.batch():
        
        if args.dry_run:
            fn = dummy_func
        else:
            fn = cmdline_function
        jobs = [executor.submit(fn, **arg_dict) for arg_dict in arg_dicts]

    for job,args in zip(jobs, arg_dicts):
        print(f"Job={job} | uid={args['run_name']}")