Spaces:
No application file
No application file
File size: 17,654 Bytes
73f4c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# coding=utf-8
# Copyright 2023 Authors of "A Watermark for Large Language Models"
# available at https://arxiv.org/abs/2301.10226
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
note = "Note: this script should be moved to/run from the same dir as the `utils` subdir lives in to work properly"
print(note)
import os
import argparse
from functools import partial
from tqdm import tqdm
import wandb
import torch
import numpy as np
from datasets import Dataset, concatenate_datasets
from utils.submitit import str2bool # better bool flag type for argparse
from utils.io import read_jsonlines, read_json, write_json, write_jsonlines
from utils.evaluation import load_tokenizer, NO_CHECK_ARGS
from utils.generation import tokenize_only
print(f"Current huggingface cache dir: {os.environ['HF_HOME']}")
def main(args):
###########################################################################
# Load generations
###########################################################################
print(f"Input dir for this run: {args.input_dir}")
print(f"Loading previously generated outputs for evaluation via oracle model and metrics...")
# check for the "attacked version" of the gen table first
gen_table_meta_path = f"{args.input_dir}/gen_table_attacked_meta.json"
gen_table_path = f"{args.input_dir}/gen_table_attacked.jsonl"
safe_gen_table_path = f"{args.input_dir}/gen_table_attacked_safe.jsonl"
attack_variants_exist = [
os.path.exists(gen_table_meta_path),
os.path.exists(gen_table_path),
]
found_attacked_files = all(attack_variants_exist)
if not found_attacked_files:
gen_table_meta_path = f"{args.input_dir}/gen_table_meta.json"
gen_table_path = f"{args.input_dir}/gen_table.jsonl"
safe_gen_table_path = f"{args.input_dir}/gen_table_safe.jsonl"
assert os.path.exists(
gen_table_meta_path
), f"failed file check for prev generations metadata json file: {gen_table_meta_path}"
assert os.path.exists(
gen_table_path
), f"failed file check for prev generations jsonl file: {gen_table_path}"
assert not os.path.exists(safe_gen_table_path), (
f"failed for safety bc there is a secondary 'safe' marked file",
f" in this dir indicating a possible issue with the generation step. ",
)
cmdline_args = args.__dict__.copy()
prev_gen_table_meta = read_json(gen_table_meta_path)
joined_args = prev_gen_table_meta.copy()
for k, v in cmdline_args.items():
if v is not None or (not k in joined_args):
joined_args.update({k: v})
else:
print(
f"cmdline arg {k} is None, leaving it as the value found in the input metadata (or None): {prev_gen_table_meta.get(k)}"
)
# check that the args used to generate the prev generations are the same as
# the current args, for the intersection of keys
for key in prev_gen_table_meta.keys():
if key in NO_CHECK_ARGS:
continue
assert joined_args[key] == prev_gen_table_meta[key], (
f"failed for safety bc after merging the prev metadata with "
f"the current cmdline args, values for '{key}' are not the same. "
f"in metadata: {prev_gen_table_meta[key]}, passed: {cmdline_args[key]}. "
f"Pass the '--overwrite_args' flag to ignore this check."
)
args = argparse.Namespace(**joined_args)
gen_table = [ex for ex in read_jsonlines(gen_table_path)]
gen_table_ds = Dataset.from_list(gen_table[: args.limit_rows])
######## length filtering: only keeps the samples of exact N tokens ########
df = gen_table_ds.to_pandas()
original_len = len(df)
print(f"Origianl #samples: {original_len}")
if args.filter_length:
df = df[
(df["baseline_completion_length"] == args.max_new_tokens)
& (df["no_wm_output_length"] == args.max_new_tokens)
& (df["w_wm_output_length"] == args.max_new_tokens)
]
# TODO: filter length for the attacked output
print(f" after filtering token length: {len(df)}")
gen_table_ds = Dataset.from_pandas(df)
###########################################################################
# Prefix list logic
###########################################################################
from utils.generation import tokenize_and_truncate
print(f"Generating prefixes for the gen table...")
# load the tokenizer
tokenizer = load_tokenizer(args)
def generate_prefix(example, prefix_length=None, text_col_names=None, tokenizer=None):
assert prefix_length is not None, "prefix_length must be specified"
assert text_col_names is not None and isinstance(
text_col_names, list
), "text_col_names must be a list of column names"
# make a copy of the example
example = example.copy()
tokd_column_data = {}
for text_col_name in text_col_names:
try:
# check that the col exists
assert text_col_name in example, f"text_col_name '{text_col_name}' not in example"
# check whether the prefix is OOB for this example
# NOTE, this logic might not make perfect sense, but it avoids having prefixes that are ragged
# which is a better quality when measuring @ idx_T
# tokenize first because we can't rely on the length col existing
example = tokenize_only(
example,
input_col_name=text_col_name,
hf_model_name=args.model_name_or_path,
tokenizer=tokenizer,
model_max_length=args.model_max_length,
)
raw_inputs = example.pop("input_ids")
if not (prefix_length <= raw_inputs.shape[1]):
if args.verbose:
print(
f"Skipping prefix generation for col {text_col_name} because prefix_length"
f" {prefix_length} is OOB for this example (orig length={raw_inputs.shape[1]})."
)
continue
# else slice the inputs to the prefix length
inputs = raw_inputs[:, : prefix_length + 1]
prefix_len = inputs.shape[1]
# decode the prefix
decoded_prefix = tokenizer.decode(inputs[0], skip_special_tokens=True)
# store the prefix and it's length
tokd_column_data.update(
{
f"{text_col_name}": decoded_prefix,
f"{text_col_name}_length": prefix_len,
}
)
except Exception as e:
if args.verbose:
print(
f"Failed to generate prefix of len {prefix_length} for example idx={example['idx']}\n"
f"Should either be becuase the col doesnt exist, or the prefix is OOB for this col in this example."
)
print(f"Exception: {e}")
if text_col_name not in tokd_column_data:
tokd_column_data.update({f"{text_col_name}": None, f"{text_col_name}_length": None})
# add the prefix_len to the example
# then add the prefixes to the example
example.update({"prefix_length": prefix_length})
example.update(tokd_column_data)
return example
# if max_prefix_length is not specified, use the max length for the gen table
if args.max_prefix_length is None:
# args.max_prefix_length = args.model_max_length
args.max_prefix_length = args.max_new_tokens
# get the maximum length out of the ["baseline_completion_length", "no_wm_output_length", "w_wm_output_length", "w_wm_output_attacked_length"]
# found in the gen table
max_gen_table_output_length = max(
[
ex["baseline_completion_length"]
for ex in gen_table_ds
if "baseline_completion_length" in ex
]
+ [ex["no_wm_output_length"] for ex in gen_table_ds if "no_wm_output_length" in ex]
+ [ex["w_wm_output_length"] for ex in gen_table_ds if "w_wm_output_length" in ex]
+ [
ex["w_wm_output_attacked_length"]
for ex in gen_table_ds
if "w_wm_output_attacked_length" in ex
]
)
args.max_prefix_length = min(args.max_prefix_length, max_gen_table_output_length)
# round down to the nearest multiple of prefix_stride
last_multiple = args.max_prefix_length - (args.max_prefix_length % args.prefix_stride)
prefix_lengths = list(
range(args.prefix_stride, last_multiple + args.prefix_stride, args.prefix_stride)
)
# if missing the largest prefix length, add it
if prefix_lengths[-1] != args.max_prefix_length:
prefix_lengths.append(args.max_prefix_length)
if args.max_prefix_length > prefix_lengths[-1]:
print(
f"WARNING: max_prefix_length {args.max_prefix_length} is larger than the last prefix length {prefix_lengths[-1]} "
f"as computed by prefix_stride {args.prefix_stride} multiples up to the longest prefix length in the gen table: "
f"{max_gen_table_output_length}."
)
# store the prefix lengths
args.prefix_lengths = prefix_lengths
print(prefix_lengths)
###########################################################################
# Create output dir if it doesn't exist, and warn if it contains metric file
# we do this here because we need the prefix list
###########################################################################
# gen_table_prefixes_path = f"{args.output_dir}/gen_table_prefixes.jsonl"
# gen_table_prefixes_meta_path = f"{args.output_dir}/gen_table_prefixes_meta.json"
# making these the same as normal data so they can be used in the same way by eval
gen_table_prefixes_path = f"{args.output_dir}/gen_table.jsonl"
gen_table_prefixes_meta_path = f"{args.output_dir}/gen_table_meta.json"
if found_attacked_files:
gen_table_prefixes_path = f"{args.output_dir}/gen_table_attacked.jsonl"
gen_table_prefixes_meta_path = f"{args.output_dir}/gen_table_attacked_meta.json"
print(f"Output dir for this run: {args.output_dir}")
# notify if exists
if os.path.exists(args.output_dir):
print(f"Output dir for this run already exists!")
print(f"Contents: {sorted(os.listdir(args.output_dir))}")
# warn if metrics file exists
if args.save_per_prefix:
for prefix_len in prefix_lengths:
prefix_table_path = (
f"{gen_table_prefixes_path.replace('.jsonl','')}_{prefix_len}.jsonl"
)
if os.path.exists(prefix_table_path):
if not args.overwrite_output_file:
print(
f"WARNING: Exiting to avoid overwriting prefix output file. "
f"Pass the '--overwrite_output_file' flag to ignore this check."
)
exit()
else:
print(
f"WARNING: Found existing prefix files at this output dir. "
f"Overwriting anyway :/"
)
elif os.path.exists(gen_table_prefixes_path):
if not args.overwrite_output_file:
print(
f"WARNING: Exiting to avoid overwriting prefix output file. "
f"Pass the '--overwrite_output_file' flag to ignore this check."
)
exit()
else:
print(
f"WARNING: Found existing prefix files at this output dir. "
f"Overwriting anyway :/"
)
else:
# create the output dir where run artifacts are stored
os.makedirs(args.output_dir)
###########################################################################
# Generate the prefixes
###########################################################################
prefix_tables = []
gen_table_ds_lst = [ex for ex in gen_table_ds]
# hacky check to see whether were working with attacked files
text_col_names = ["baseline_completion", "no_wm_output", "w_wm_output"]
if "w_wm_output_attacked" in gen_table_ds_lst[0]:
assert found_attacked_files, (
f"found 'w_wm_output_attacked' in the gen table, but apparently we didn't 'load attacked files'?."
f"Odd... please check whats going on in the input_dir."
)
text_col_names.append("w_wm_output_attacked")
for prefix_len in tqdm(prefix_lengths):
prefixes_partial = partial(
generate_prefix,
prefix_length=prefix_len,
tokenizer=tokenizer,
text_col_names=text_col_names,
)
gen_table_prefixes = [prefixes_partial(ex) for ex in gen_table_ds_lst]
# add the prefix dataset to the list of prefix tables
prefix_tables.append(Dataset.from_list(gen_table_prefixes))
# now concat the tables
gen_table_prefixes = concatenate_datasets(prefix_tables)
###########################################################################
# Write the metadata and final dataset out to disk in jsonl format
# (and optionally save the individual prefix shards)
###########################################################################
# write the metadata
write_json(args.__dict__, gen_table_prefixes_meta_path, indent=4)
# write the dataset
if not args.save_per_prefix:
write_jsonlines(gen_table_prefixes, gen_table_prefixes_path)
else:
# save the individual prefix shards
for prefix_len in prefix_lengths:
prefix_table = gen_table_prefixes.filter(lambda ex: ex["prefix_length"] == prefix_len)
prefix_table_path = f"{gen_table_prefixes_path.replace('.jsonl','')}_{prefix_len}.jsonl"
write_jsonlines(prefix_table, prefix_table_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Transform jsonl datasets into a broadcasted prefix version."
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="use to load the tokenizer",
)
parser.add_argument(
"--prefix_stride",
type=int,
default=10,
help="The stride to use when generating prefixes.",
)
parser.add_argument(
"--max_prefix_length",
type=int,
default=None,
help="The maximum prefix length to use when generating prefixes.",
)
parser.add_argument(
"--model_max_length",
type=int,
default=2048,
)
parser.add_argument(
"--input_dir",
type=str,
default=None,
help="The directory containing the input files.",
)
parser.add_argument(
"--output_dir",
type=str,
default=None,
help=("The directory in which to write out the dataset after creating prefixes. "),
)
parser.add_argument(
"--save_per_prefix",
type=str2bool,
default=False,
help="Whether to save the individual shards of the dataset corresponding to each prefix length.",
)
parser.add_argument(
"--overwrite_output_file",
type=str2bool,
default=False,
help="Whether to overwrite the output file if it already exists.",
)
parser.add_argument(
"--limit_rows",
type=int,
default=None,
help="The number of rows to limit the dataset to. Useful for debugging.",
)
parser.add_argument(
"--verbose",
type=str2bool,
default=False,
help="Whether to print out the indexes for errors as the prefixes are generated.",
)
parser.add_argument(
"--filter_length",
action="store_true",
default=False,
)
parser.add_argument(
"--max_new_tokens",
type=int,
default=None,
)
args = parser.parse_args()
###########################################################################
# Argument validation and conditional setting
###########################################################################
# require output_dir to be specified and different from input_dir
assert args.input_dir is not None
assert args.output_dir is not None
assert args.input_dir != args.output_dir, "input_dir and output_dir must be different"
# check limit_rows
assert (args.limit_rows is None) or (
(args.limit_rows > 0) and isinstance(args.limit_rows, int)
), "limit_rows must be > 0 or None"
# check prefix_stride
assert (args.prefix_stride > 0) and isinstance(
args.prefix_stride, int
), "prefix_stride must be > 0"
main(args)
|