Spaces:
No application file
No application file
File size: 18,327 Bytes
73f4c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# coding=utf-8
# Copyright 2023 Authors of "A Watermark for Large Language Models"
# available at https://arxiv.org/abs/2301.10226
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
# HF classes
from datasets import load_dataset, IterableDataset
from torch import Tensor
from tokenizers import Tokenizer
from transformers import (
AutoTokenizer,
LlamaTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForCausalLM,
DataCollatorWithPadding,
)
from .data.lfqa import load_lfqa
from .data.essays import load_essays
from .data.wikitext import load_wikitext
MAX_GENERATIONS = int(10000) # Hardcoded max length to avoid infinite loop
def load_model(args):
"""Load and return the model and tokenizer"""
args.is_seq2seq_model = any(
[(model_type in args.model_name_or_path) for model_type in ["t5", "T0"]]
)
args.is_decoder_only_model = any(
[(model_type in args.model_name_or_path) for model_type in ["gpt", "opt", "bloom", "llama"]]
)
if args.is_seq2seq_model:
model = AutoModelForSeq2SeqLM.from_pretrained(args.model_name_or_path)
elif args.is_decoder_only_model:
if args.load_fp16:
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path, torch_dtype=torch.float16, device_map="auto"
)
else:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
else:
raise ValueError(f"Unknown model type: {args.model_name_or_path}")
if args.use_gpu:
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.load_fp16:
pass
else:
model = model.to(device)
else:
device = "cpu"
model.eval()
if args.is_decoder_only_model:
padding_side = "left"
else:
raise NotImplementedError(
"Need to check how to handle padding for seq2seq models when calling generate"
)
if "llama" in args.model_name_or_path:
tokenizer = LlamaTokenizer.from_pretrained(
args.model_name_or_path, padding_side=padding_side
)
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
else:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path, padding_side=padding_side
)
args.model_max_length = model.config.max_position_embeddings
return model, tokenizer, device
def add_idx(example, idx):
example.update({"idx": idx})
return example
def load_hf_dataset(args):
dataset_name, dataset_config_name = args.dataset_name, args.dataset_config_name
if dataset_name == "lfqa":
dataset = load_lfqa(args)
args.__dict__.update(
{
"truncate_input_for_prompt": False,
"input_col_name": "prefix",
"ref_output_col_name": "gold_completion",
}
)
# other args set within the load_lfqa function
elif dataset_name == "wikitext":
dataset = load_wikitext(args)
args.__dict__.update(
{
"truncate_input_for_prompt": True,
"input_col_name": "text",
"ref_output_col_name": None,
}
)
# other args set within the load_wikitext function
elif dataset_name == "essays":
dataset = load_essays(args)
args.__dict__.update(
{
"truncate_input_for_prompt": False,
"input_col_name": "instructions",
"ref_output_col_name": "essays",
}
)
elif dataset_name == "cml_pile":
subsets = [dataset_config_name]
dataset = load_dataset(
"./data/cml_pile.py",
subsets=subsets,
streaming=args.stream_dataset,
split=None,
ignore_verifications=True,
)[args.dataset_split]
args.__dict__.update(
{
"truncate_input_for_prompt": True,
"input_col_name": "text",
"ref_output_col_name": None,
}
)
else:
dataset = load_dataset(
dataset_name,
dataset_config_name,
split=args.dataset_split,
streaming=args.stream_dataset,
)
if "c4" in dataset_name:
args.__dict__.update(
{
"truncate_input_for_prompt": True,
"input_col_name": "text",
"ref_output_col_name": None,
}
)
args.columns_to_remove = list(
set(args.columns_to_remove + ["text", "timestamp", "url"])
)
elif "pile" in dataset_name:
args.__dict__.update(
{
"truncate_input_for_prompt": True,
"input_col_name": "text",
"ref_output_col_name": None,
}
)
args.columns_to_remove = list(set(args.columns_to_remove + ["text", "meta"]))
else:
raise NotImplementedError(
f"Dataset {dataset_name} not yet supported. Please add specs to load_hf_dataset function."
)
# add index to each row of dataset
indexed_dataset = dataset.map(add_idx, batched=False, with_indices=True)
# shuffle the first shuffle_buffer_size rows of streaming dataset, or whole dataset if not streaming
# and take/select only the first n rows of the dataset (which caps the total number of pipeline iters possible)
if isinstance(indexed_dataset, IterableDataset):
shuffled_dataset = (
indexed_dataset.shuffle(seed=args.shuffle_seed, buffer_size=args.shuffle_buffer_size)
if args.shuffle_dataset
else indexed_dataset
)
limited_dataset = (
shuffled_dataset.take(args.limit_indices)
if args.limit_indices is not None
else shuffled_dataset
)
else:
shuffled_dataset = (
indexed_dataset.shuffle(seed=args.shuffle_seed)
if args.shuffle_dataset
else indexed_dataset
)
limited_dataset = (
shuffled_dataset.select(range(args.limit_indices))
if args.limit_indices is not None
else shuffled_dataset
)
if args.limit_indices is None:
try:
args.limit_indices = len(limited_dataset)
except Exception as e:
# can't infer length of dataset, probably because it's an IterableDataset
pass
return limited_dataset
def check_input_lengths(
example,
min_sample_len=0,
min_prompt_len=0,
min_completion_len=0,
max_input_len=None,
max_new_tokens=None,
):
orig_sample_length = example["orig_sample_length"]
prompt_length = example["prompt_length"]
real_completion_length = example["baseline_completion_length"]
if max_input_len is not None:
assert (
max_new_tokens is not None
), "need to specify max_new_tokens if max_input_length is specified"
conds = all(
[
orig_sample_length >= min_sample_len,
prompt_length >= min_prompt_len,
real_completion_length >= min_completion_len,
(
((prompt_length + max_new_tokens) <= max_input_len)
if max_input_len is not None
else True
),
]
)
return conds
def check_output_lengths(example, min_output_len=0):
# FIXME, maybe should check baseline completion length too
no_wm_output_len = example["no_wm_output_length"]
w_wm_output_len = example["w_wm_output_length"]
conds = all(
[
no_wm_output_len >= min_output_len,
w_wm_output_len >= min_output_len,
]
)
return conds
def tokenize_and_truncate(
example: dict,
input_col_name: str = "text",
completion_length: int = None,
prompt_length: int = None,
hf_model_name: str = None,
tokenizer=None,
truncate_left=False,
model_max_length=None,
):
"""take hf dataset entry and preprocess it for completion by a model"""
assert hf_model_name is not None, "need model name to know whether to adjust wrt special tokens"
assert input_col_name in example, f"expects {input_col_name} field to be present"
# tokenize
inputs_ids = tokenizer(example[input_col_name], return_tensors="pt")["input_ids"]
example.update({"untruncated_inputs": inputs_ids})
if truncate_left:
# truncate left
inputs_ids = inputs_ids[:, -model_max_length:]
if example["untruncated_inputs"].shape != inputs_ids.shape:
print(
"Input too long for model! ",
"Left truncating under assumption that this is the prompt+output ",
"to be fed to the *oracle* model",
)
example.update({"untruncated_inputs": inputs_ids})
if (completion_length is not None) and (prompt_length is None):
# leave at least one token as prefix # FIXME I think plus 1 since 0 is start tok
slice_length = min(inputs_ids.shape[1] - 1, completion_length)
elif (prompt_length is not None) and (completion_length is None):
desired_comp_len = (inputs_ids.shape[1] - 1) - prompt_length
slice_length = desired_comp_len if desired_comp_len > 0 else 0
else:
raise ValueError(
(
f"Can only tokenize and truncate based on either the desired prompt length or desired completion length,",
f" but got completion_length:{completion_length},prompt_length:{prompt_length}",
)
)
# truncate
inputs_ids = inputs_ids[:, : inputs_ids.shape[1] - slice_length]
# logic depending on special tokens for the model
if "t5" in hf_model_name or "T0" in hf_model_name:
inputs_ids[0, -1] = 1
# else: pass
example.update({"input_ids": inputs_ids})
return example
def tokenize_only(
example: dict,
input_col_name: str = "text",
ref_output_col_name: str = None,
tokenize_ref_output: bool = False,
hf_model_name: str = None,
tokenizer=None,
model_max_length=None,
):
"""take hf dataset entry and preprocess it for completion by a model
(but don't truncate) where the dataset optionally has a secondary column
that is the reference output to be scored against"""
"""take hf dataset entry and preprocess it for completion by a model"""
assert hf_model_name is not None, "need model name to know whether to adjust wrt special tokens"
assert input_col_name in example, f"expects {input_col_name} field to be present"
if ref_output_col_name is not None:
assert ref_output_col_name in example, f"expects {ref_output_col_name} field to be present"
# tokenize input
input_ids = tokenizer(
example[input_col_name], return_tensors="pt", truncation=True, max_length=model_max_length
)["input_ids"]
example.update({"input_ids": input_ids})
if tokenize_ref_output:
# NOTE not sure this logic is useful/required
if ref_output_col_name is not None:
# tokenize ref output
ref_output_ids = tokenizer(
example[ref_output_col_name],
return_tensors="pt",
truncation=True,
max_length=model_max_length,
)["input_ids"]
tokd_input_len, tokd_ref_output_length = input_ids.shape[1], ref_output_ids.shape[1]
if tokd_input_len + tokd_ref_output_length > model_max_length:
# truncate the ref output
original_ref_output_len = tokd_ref_output_length
ref_output_ids = ref_output_ids[:, : model_max_length - tokd_input_len]
if original_ref_output_len != ref_output_ids.shape[1]:
print(
"Right truncating output, input+ref output too long for model. "
"Note, since this is generation time truncating the reference doesn't affect anything really."
)
example.update({"ref_output_ids": ref_output_ids})
# logic depending on special tokens for the model
if "t5" in hf_model_name or "T0" in hf_model_name:
raise NotImplementedError("T5 style model not yet supported")
return example
def tokenize_for_generation(
example: dict,
max_new_tokens: int = None,
min_prompt_tokens: int = None,
hf_model_name: str = None,
tokenizer: Tokenizer = None,
args: dict = None,
):
# preprocessing, generation & scoring
assert isinstance(example, dict), "Expect no batch dimension currently!"
if not args.truncate_input_for_prompt:
tokenize_ref_output = True # NOTE, note really sure how necessary this is
# preprocess for model generation/completion
example = tokenize_only(
example,
input_col_name=args.input_col_name,
ref_output_col_name=args.ref_output_col_name,
hf_model_name=hf_model_name,
tokenizer=tokenizer,
model_max_length=args.model_max_length,
tokenize_ref_output=tokenize_ref_output,
)
# Parse the results of tokenization. Simple, since
# the prompt and baseline completion are from the raw text
re_decoded_input = example[args.input_col_name]
decoded_baseline_completion = example[args.ref_output_col_name]
prompt_len = example["input_ids"].shape[1]
baseline_completion_len = example["ref_output_ids"].shape[1]
full_sample_len = prompt_len + baseline_completion_len
# for now, remove this here, since it's not used downstream
example.pop("ref_output_ids")
else:
# preprocess for model generation/completion
example = tokenize_and_truncate(
example,
completion_length=max_new_tokens,
prompt_length=min_prompt_tokens,
hf_model_name=hf_model_name,
tokenizer=tokenizer,
)
# Logic to parse the results of tokenzation and splitting to
# construct string versions of the prompt and baseline completion
inputs = example["input_ids"]
prompt_len = inputs.shape[1]
# for isolating the "gold" baseline completion
untruncated_inputs = example.pop("untruncated_inputs")
full_sample_len = untruncated_inputs.shape[1]
# decode the preprocessed input to store for audit
re_decoded_input = tokenizer.batch_decode(inputs, skip_special_tokens=True)[0]
# also decode the original suffix of the input for audit as the baseline
baseline_completion_tokens = untruncated_inputs[:, inputs.shape[-1] :]
decoded_baseline_completion = tokenizer.batch_decode(
baseline_completion_tokens, skip_special_tokens=True
)[0]
baseline_completion_len = full_sample_len - prompt_len
example.update(
{
"truncated_input": re_decoded_input,
"baseline_completion": decoded_baseline_completion,
"orig_sample_length": full_sample_len,
"prompt_length": prompt_len,
"baseline_completion_length": baseline_completion_len,
}
)
return example
def collate_batch(input_ids: list, collator: DataCollatorWithPadding = None):
"""collate batch of input_ids into a padded batch of tensors"""
assert (
input_ids[0].shape[0] == 1 and input_ids[0].shape[1] > 0
), "expecting batch dimension of each tensor to be 1"
# remove batch dimension for each tensor
input_ids = [x.squeeze(0) for x in input_ids]
return collator({"input_ids": input_ids})["input_ids"]
def generate(
examples,
data_collator=None,
generate_without_watermark=None,
generate_with_watermark=None,
watermark_processor=None,
tokenizer=None,
device=None,
args=None,
):
input_ids = collate_batch(input_ids=examples["input_ids"], collator=data_collator).to(device)
with torch.no_grad():
if args.generation_seed is not None:
torch.manual_seed(args.generation_seed)
output_without_watermark = generate_without_watermark(input_ids=input_ids)
if args.generation_seed is not None:
torch.manual_seed(args.generation_seed)
output_with_watermark = generate_with_watermark(input_ids=input_ids)
if args.is_decoder_only_model:
# need to isolate the newly generated tokens
output_without_watermark = output_without_watermark[:, input_ids.shape[-1] :]
output_with_watermark = output_with_watermark[:, input_ids.shape[-1] :]
decoded_output_without_watermark = tokenizer.batch_decode(
output_without_watermark, skip_special_tokens=True
)
decoded_output_with_watermark = tokenizer.batch_decode(
output_with_watermark, skip_special_tokens=True
)
examples.update(
{
"no_wm_output": decoded_output_without_watermark,
"w_wm_output": decoded_output_with_watermark,
"no_wm_output_length": (output_without_watermark != tokenizer.pad_token_id)
.sum(dim=-1)
.tolist(),
"w_wm_output_length": (output_with_watermark != tokenizer.pad_token_id)
.sum(dim=-1)
.tolist(),
}
)
if watermark_processor.spike_entropies is not None:
examples["spike_entropies"] = watermark_processor._get_and_clear_stored_spike_ents()
examples["spike_entropies"] = [
ents[:num_toks]
for ents, num_toks in zip(examples["spike_entropies"], examples["w_wm_output_length"])
]
return examples
|