nevi1's picture
Upload 244 files
73f4c20
# micro lib to implement the watermarking extensions to LM generation
# as well as utils for eval/validaiton
from typing import List, Optional, Callable
import time
import random
import math
import torch
import numpy as np
from torch import Tensor
from tokenizers import Tokenizer
from transformers import LogitsProcessor, LogitsProcessorList, set_seed
def tokenize_and_truncate(example: dict,
completion_length: int = None,
prompt_length: int = None,
hf_model_name: str = None,
tokenizer = None,
model_max_seq_len: int = 4096):
"""take hf dataset entry and preprocess it for completion by a model"""
assert hf_model_name is not None, "need model name to know whether to adjust wrt special tokens"
assert "text" in example, "expects 'text' field to be present"
# tokenize
inputs = tokenizer.encode(example["text"], return_tensors="pt", truncation=True, max_length=model_max_seq_len)
example.update({"untruncated_inputs": inputs})
if (completion_length is not None) and (prompt_length is None):
# leave at least one token as prefix # FIXME I think plus 1 since 0 is start tok
slice_length = min(inputs.shape[1]-1, completion_length)
elif (prompt_length is not None) and (completion_length is None):
desired_comp_len = (inputs.shape[1]-1) - prompt_length
slice_length = desired_comp_len if desired_comp_len > 0 else 0
else:
raise ValueError((f"Can only tokenize and truncate based on either the desired prompt length or desired completion length,",
f" but got completion_length:{completion_length},prompt_length:{prompt_length}"))
# truncate
inputs = inputs[:,:inputs.shape[1]-slice_length]
# logic depending on special tokens for the model
if "t5" in hf_model_name or "T0" in hf_model_name:
inputs[0,-1] = 1
# else: pass
example.update({"inputs": inputs})
return example
class BlacklistLogitsProcessor(LogitsProcessor):
"""
[`LogitsProcessor`] that enforces that specified sequences will never be sampled.
Args:
bad_words_ids (`List[List[int]]`):
List of list of token ids that are not allowed to be generated. In order to get the token ids of the words
that should not appear in the generated text, use `tokenizer(bad_words, add_prefix_space=True,
add_special_tokens=False).input_ids`.
eos_token_id (`int`):
The id of the *end-of-sequence* token.
"""
def __init__(self,
bad_words_ids: List[List[int]],
eos_token_id: int,
vocab: list[int],
vocab_size: int,
bl_proportion: float=0.5,
bl_logit_bias: float=1.0,
bl_type: str = "hard", # "soft"
initial_seed: int=None,
dynamic_seed: str=None, # "initial", "markov_1", None
store_bl_ids: bool=True,
store_spike_ents: bool = False,
noop_blacklist: bool = False,
):
self.vocab = vocab
self.vocab_size = vocab_size
self.bl_proportion = bl_proportion
self.bl_logit_bias = bl_logit_bias
self.bl_type = bl_type
if initial_seed is None:
self.initial_seed = None
assert dynamic_seed != "initial"
else:
random.seed(initial_seed)
self.initial_seed = initial_seed
self.dynamic_seed = dynamic_seed
self.eos_token_id = eos_token_id
# self.bad_words_id_length_1 = self._prepare_bad_words(bad_words_ids)
self.bad_words_mask: Optional[torch.LongTensor] = None
self.store_bl_ids = store_bl_ids
self.bl_ids = None
self.store_spike_ents = store_spike_ents
self.spike_entropies = None
# hack to replace this with an approximation of infinite bias
# so that the expectation coefficient will come out to 1.0
if self.bl_type == "hard":
self.bl_logit_bias = 10000 # FIXME to a value that is actually close to the largest soft watermark used
alpha = torch.exp(torch.tensor(self.bl_logit_bias)).item()
# gamma = self.bl_proportion
gamma = 1.0-self.bl_proportion
self.alpha = alpha
self.gamma = gamma
self.z_value = ((1-gamma)*(alpha-1))/(1-gamma+(alpha*gamma))
self.expected_wl_coef = (gamma*alpha)/(1-gamma+(alpha*gamma))
# catch for overflow when bias is "infinite"
if self.alpha == torch.inf:
self.z_value = 1.0
self.expected_wl_coef = 1.0
self.noop_blacklist = noop_blacklist
if self.noop_blacklist: print(f"Blacklist processor for accounting only, no rescoring of logits")
self.g_cuda = None
self.large_prime = 15485863
@property
def blacklisted_ids(self):
assert self.store_bl_ids, "Need to instantiate processor with `store_bl_ids` to be able to retrieve them later"
# flatten the each indexes blacklist
l_of_bl_ids = [[] for _ in range(len(self.bl_ids))]
for b_idx, batch in enumerate(self.bl_ids):
for l_of_l, seed in batch:
bl_ids = [l[0] for l in l_of_l] # this was the main line, maybe unnecessary now?
l_of_bl_ids[b_idx].append((bl_ids,seed))
return l_of_bl_ids
def get_and_clear_stored_bl_ids(self):
old_bl_ids = self.bl_ids
self.bl_ids = None
return old_bl_ids
def get_spike_entropies(self):
spike_ents = [[] for _ in range(len(self.spike_entropies))]
for b_idx, ent_tensor_list in enumerate(self.spike_entropies):
for ent_tensor in ent_tensor_list:
spike_ents[b_idx].append(ent_tensor.item())
return spike_ents
def get_and_clear_stored_spike_ents(self):
spike_ents = self.get_spike_entropies()
self.spike_entropies = None
return spike_ents
def compute_spike_entropy(self, scores):
# precomputed z value in init
probs = scores.softmax(dim=-1)
denoms = 1+(self.z_value*probs)
renormed_probs = probs / denoms
sum_renormed_probs = renormed_probs.sum()
return sum_renormed_probs
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
self.bad_words_id_length_1 = [None for _ in range(input_ids.shape[0])]
if self.g_cuda is None:
self.g_cuda = torch.Generator(device=input_ids.device)
for b_idx in range(input_ids.shape[0]):
if self.dynamic_seed == "initial":
self.g_cuda.manual_seed(self.large_prime*self.initial_seed)
elif self.dynamic_seed == "markov_1":
self.g_cuda.manual_seed(self.large_prime*input_ids[b_idx][-1].item())
elif self.dynamic_seed is None:
# let the rng evolve naturally - this is not a realistic setting
pass
bl_ct = int(self.vocab_size*self.bl_proportion)
blacklist_ids = torch.randperm(self.vocab_size, device=input_ids.device, generator=self.g_cuda)[:bl_ct] # ty Yuxin :]
if self.store_bl_ids:
if self.bl_ids is None: self.bl_ids = [[] for _ in range(input_ids.shape[0])]
self.bl_ids[b_idx].append((blacklist_ids,input_ids.tolist()[b_idx][-1]))
if self.store_spike_ents:
if self.spike_entropies is None: self.spike_entropies = [[] for _ in range(input_ids.shape[0])]
self.spike_entropies[b_idx].append(self.compute_spike_entropy(scores[b_idx]))
# self.bad_words_id_length_1[b_idx] = self._prepare_bad_words(blacklist_ids)
# this logic may not really be necessary for our usecase
self.bad_words_id_length_1[b_idx] = blacklist_ids
if not self.noop_blacklist:
self.bad_words_mask = self._calc_curr_bad_word_mask(scores)
scores = self._set_scores_to_inf_for_banned_tokens(scores)
return scores
def _prepare_bad_words(self, bad_words_ids: List[List[int]]) -> list[int]:
bad_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [self.eos_token_id], bad_words_ids))
return bad_words_ids
# used to have more logic, not used now
def _calc_curr_bad_word_mask(self, scores: torch.FloatTensor) -> torch.BoolTensor:
bad_words_mask = torch.zeros_like(scores)
for b_idx in range(len(self.bad_words_id_length_1)):
bad_words_mask[b_idx][self.bad_words_id_length_1[b_idx]] = 1
final_mask = bad_words_mask.bool()
return final_mask
def _set_scores_to_inf_for_banned_tokens(
self, scores: torch.Tensor
) -> torch.Tensor:
"""
Modifies the scores in place by setting the banned token positions to `-inf`. Banned token is expected to be a
list of list of banned tokens to ban in the format [[batch index, vocabulary position],...
Args:
scores: logits distribution of shape (batch size, vocabulary size)
banned_tokens: list of list of tokens to ban of length (batch_size)
# NOTE^^ Omitted logic for dynamic mask based on multi-token ban words
"""
if self.bl_type == "hard":
scores = scores.masked_fill(self.bad_words_mask, -float("inf"))
elif self.bl_type == "soft":
whitelist_mask = torch.logical_not(self.bad_words_mask)
blacklist_mask = self.bad_words_mask
scores[whitelist_mask] = scores[whitelist_mask] + self.bl_logit_bias
# scores[blacklist_mask] = scores[blacklist_mask] - self.bl_logit_bias # additive only
else:
raise NotImplementedError(f"unrecognized bl type {self.bl_type}!")
return scores
def score_sequence(inputs: Tensor = None,
outputs: Tensor = None,
tokenizer: Tokenizer = None,
# logits_processor: LogitsProcessor = None,
initial_seed: int = None,
dynamic_seed: str = None,
bl_proportion: float = None,
use_cuda: bool = True,
record_hits: bool = False,
debug: bool = True,
# trim_tokens: int = 2,
):
assert (inputs is not None) and \
(outputs is not None) and \
(tokenizer is not None),"output tensor, tokenizer, and bl params req'd"
# (logits_processor is not None),
vocabulary = list(tokenizer.get_vocab().values())
vocab_size = len(vocabulary)
model_generations = outputs.tolist()[0] # these are tensors unpack once for speed
# toks_generated = model_generations[num_orig_input_tokens:]
toks_generated = model_generations
num_toks_generated = len(toks_generated)
# num_toks_to_trim = trim_tokens*2
# if (num_toks_generated-num_toks_to_trim > 0) == False:
# return -1, -1
# assert num_toks_generated > num_toks_to_trim, f"Need more than {num_toks_to_trim} toks total since we trim start and end a bit."
# toks_generated = toks_generated[trim_tokens:-trim_tokens]
if initial_seed is not None:
random.seed(initial_seed)
device = (torch.device("cuda") if use_cuda else torch.device("cpu"))
g_cuda = torch.Generator(device=device)
large_prime = 15485863
bl_hits, hit_list = 0, []
prev_token = inputs[0][-1].item()
# prev_token = toks_generated[0] # haven't decided whether this edge effect matters
# for idx,tok_gend in enumerate(toks_generated[1:]):
for idx,tok_gend in enumerate(toks_generated):
# prev_token = model_generations[num_orig_input_tokens+idx-1]
if dynamic_seed == "initial":
g_cuda.manual_seed(large_prime*initial_seed)
elif dynamic_seed == "markov_1":
g_cuda.manual_seed(large_prime*prev_token)
elif dynamic_seed is None:
# let the rng evolve naturally - this is not a realistic setting
pass
bl_ct = int(vocab_size*bl_proportion)
posthoc_blacklist = torch.randperm(vocab_size, device=device, generator=g_cuda)[:bl_ct] # ty Yuxin :]
tok_in_ph_bl = tok_gend in posthoc_blacklist
if tok_in_ph_bl:
bl_hits += 1
hit_list.append(True)
else:
hit_list.append(False)
if debug:
decoded_token = tokenizer.decode(tok_gend, skip_special_tokens=True)
print(f"Token generated: '{decoded_token}' was in the blacklist {tok_in_ph_bl}")
prev_token = tok_gend
if debug:
print(f"wl hits / num tokens : {num_toks_generated-bl_hits}/{num_toks_generated} = {(num_toks_generated-bl_hits)/num_toks_generated:.02f}")
print(f"bl hits / num tokens : {bl_hits}/{num_toks_generated} = {bl_hits/num_toks_generated:.02f}")
if record_hits:
return bl_hits, num_toks_generated, hit_list
# bl_fraction = bl_hits/num_toks_generated
return bl_hits, num_toks_generated
def tokenize_for_generation(example: dict,
idx: int,
max_new_tokens: int=None,
min_prompt_tokens: int=None,
hf_model_name : str=None,
tokenizer: Tokenizer=None,
model: torch.nn.Module=None):
# preprocessing, generation & scoring
assert isinstance(example, dict), "Expect no batch dimension currently!"
# preprocess for model generation/completion
example = tokenize_and_truncate(example,
completion_length=max_new_tokens,
prompt_length=min_prompt_tokens,
hf_model_name=hf_model_name,
tokenizer=tokenizer,
# model_max_seq_len=model.config.max_position_embeddings)
model_max_seq_len=None)
inputs = example["inputs"]
# for calculating the baseline violation rate across the "gold" completion
untruncated_inputs = example["untruncated_inputs"]
# decode the preprocessed input to store for audit
re_decoded_input = tokenizer.batch_decode(inputs, skip_special_tokens=True)[0]
example.update({"truncated_input":re_decoded_input})
# also decode the original suffix of the input for audit as the baseline
decoded_untruncated_input = tokenizer.batch_decode(untruncated_inputs, skip_special_tokens=True)[0]
example.update({"baseline_completion":decoded_untruncated_input.replace(re_decoded_input,"")})
example.update({
"orig_sample_length" : untruncated_inputs.shape[1],
"prompt_length" : inputs.shape[1],
"real_completion_length" : untruncated_inputs.shape[1] - inputs.shape[1],
})
return example
def generate_completions(example: dict,
idx: int,
max_new_tokens: int=None,
hf_model_name : str=None,
tokenizer: Tokenizer=None,
model: torch.nn.Module=None,
no_bl_partial: Callable=None,
w_bl_partial: Callable=None,
# return_logits: bool=False,
bl_processor_list: LogitsProcessorList=None):
# preprocessing, generation & scoring
assert isinstance(example, dict), "Expect no batch dimension currently!"
# # preprocess for model generation/completion
# example = tokenize_and_truncate(example,
# completion_length=max_new_tokens,
# hf_model_name=hf_model_name,
# tokenizer=tokenizer,
# model_max_seq_len=model.config.max_position_embeddings)
# inputs = example["inputs"]
# # for calculating the baseline violation rate across the "gold" completion
# untruncated_inputs = example["untruncated_inputs"]
# # decode the preprocessed input to store for audit
# re_decoded_input = tokenizer.batch_decode(inputs, skip_special_tokens=True)[0]
# example.update({"truncated_input":re_decoded_input})
# # also decode the original suffix of the input for audit as the baseline
# decoded_untruncated_input = tokenizer.batch_decode(untruncated_inputs, skip_special_tokens=True)[0]
# example.update({"baseline_completion":decoded_untruncated_input.replace(re_decoded_input,"")})
inputs = example["inputs"]
re_decoded_input = example["truncated_input"]
# call the vanilla and watermarked generation function wrappers with the preprocessed inputs
with torch.no_grad():
samples_taken = 0
max_retries = 10
success = False
while (success is False) and (samples_taken < max_retries):
samples_taken += 1
# set_seed(1234) # debugging the error when using sampling # leaving this off for now
start_generation = time.time()
outputs_no_bl = no_bl_partial(inputs.to(model.device))
example["no_bl_gen_time"] = time.time() - start_generation
# set_seed(1234) # debugging the error when using sampling
start_generation = time.time()
outputs_w_bl = w_bl_partial(inputs.to(model.device))
example["w_bl_gen_time"] = time.time() - start_generation
# if return_logits:
# output_no_bl_dict = outputs_no_bl
# logits_no_bl = output_no_bl_dict.scores
# outputs_no_bl = output_no_bl_dict.sequences
# example["logits_no_bl"] = logits_no_bl
# output_w_bl_dict = outputs_w_bl
# logits_w_bl = output_w_bl_dict.scores
# outputs_w_bl = output_w_bl_dict.sequences
# example["logits_w_bl"] = logits_w_bl
if bl_processor_list:
if bl_processor_list[0].bl_ids is not None:
example["bl_ids"] = bl_processor_list[0].get_and_clear_stored_bl_ids()
if bl_processor_list[0].spike_entropies is not None:
example["spike_entropies"] = bl_processor_list[0].get_and_clear_stored_spike_ents()
try:
# decode and store the new generations for auditing
no_bl_decoded_output = tokenizer.batch_decode(outputs_no_bl, skip_special_tokens=True)[0]
example.update({"no_bl_output":no_bl_decoded_output.replace(re_decoded_input,"")})
w_bl_decoded_output = tokenizer.batch_decode(outputs_w_bl, skip_special_tokens=True)[0]
example.update({"w_bl_output":w_bl_decoded_output.replace(re_decoded_input,"")})
success = True
except:
# log what happened
print(f"Error while trying to decode the outputs of the model...")
if samples_taken == 1:
print(f"truncated_input: {inputs.tolist()}")
print(f"Result of attempt {samples_taken}")
print(f"shape outputs_no_bl: {outputs_no_bl.shape}")
no_bl_toks = outputs_no_bl.tolist()[0]
print(f"outputs_no_bl: {no_bl_toks}")
print(f"outputs_no_bl min: {min(no_bl_toks)}")
print(f"outputs_no_bl max: {max(no_bl_toks)}")
print(f"shape outputs_w_bl: {outputs_w_bl.shape}")
w_bl_toks = outputs_w_bl.tolist()[0]
print(f"outputs_w_bl: {w_bl_toks}")
print(f"outputs_w_bl min: {min(w_bl_toks)}")
print(f"outputs_w_bl max: {max(w_bl_toks)}")
if success is False:
print(f"Unable to get both a no_bl and w_bl output that were decodeable after {samples_taken} tries, returning empty strings.")
example.update({"no_bl_output":""})
example.update({"w_bl_output":""})
if bl_processor_list:
if bl_processor_list[0].bl_ids is not None:
example["bl_ids"] = []
if bl_processor_list[0].spike_entropies is not None:
example["spike_entropies"] = []
# Able to get lengths in here by checking
# truncated input shape versus the output shape
example.update({
# "baseline_num_tokens_generated" : untruncated_inputs.shape[1] - inputs.shape[1], # want this earlier now
"no_bl_num_tokens_generated" : outputs_no_bl.shape[1] - inputs.shape[1],
"w_bl_num_tokens_generated" : outputs_w_bl.shape[1] - inputs.shape[1]
})
example.update({
"no_bl_sec_per_tok" : example["no_bl_gen_time"]/example["no_bl_num_tokens_generated"],
"no_bl_tok_per_sec" : example["no_bl_num_tokens_generated"]/example["no_bl_gen_time"],
"w_bl_sec_per_tok" : example["w_bl_gen_time"]/example["w_bl_num_tokens_generated"],
"w_bl_tok_per_sec" : example["w_bl_num_tokens_generated"]/example["w_bl_gen_time"],
})
# now done externally because these persist outside this func
# # remove any fields we don't need to keep
# del example["inputs"]
# del example["untruncated_inputs"]
return example
def compute_bl_metrics(example: dict,
idx: int,
hf_model_name: str = None,
tokenizer: Tokenizer=None,
initial_seed: int = None,
dynamic_seed: str = None,
bl_proportion: float = None,
use_cuda: bool = None,
record_hits: bool = False,
limit_output_tokens: int = 0):
# if example["idx"] == 3: breakpoint()
# okay need to catch an odd bug here and fix things
baseline_before = example["baseline_completion"]
example["baseline_completion"] = baseline_before.replace(example["truncated_input"][:-1],"")
if example["baseline_completion"] != baseline_before:
print("baseline input replacement bug occurred!")
no_bl_before = example["no_bl_output"]
example["no_bl_output"] = no_bl_before.replace(example["truncated_input"][:-1],"")
if example["no_bl_output"] != no_bl_before:
print("no_bl_output input replacement bug occurred!")
w_bl_before = example["w_bl_output"]
example["w_bl_output"] = w_bl_before.replace(example["truncated_input"][:-1],"")
if example["w_bl_output"] != w_bl_before:
print("w_bl_output input replacement bug occurred!")
if ("w_bl_output_attacked" in example):
w_bl_attacked_before = example["w_bl_output_attacked"]
example["w_bl_output_attacked"] = w_bl_attacked_before.replace(example["truncated_input"][:-1],"")
if example["w_bl_output_attacked"] != w_bl_attacked_before:
print("w_bl_output_attacked input replacement bug occurred!")
##########
# preprocess for model generation/completion
inputs = tokenize_and_truncate({"text":example["truncated_input"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"]
baseline_outputs = tokenize_and_truncate({"text":example["baseline_completion"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"][:,1:]
no_bl_outputs = tokenize_and_truncate({"text":example["no_bl_output"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"][:,1:]
w_bl_outputs = tokenize_and_truncate({"text":example["w_bl_output"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"][:,1:]
if "w_bl_output_attacked" in example:
w_bl_attacked_outputs = tokenize_and_truncate({"text":example["w_bl_output_attacked"]},
completion_length=0,
hf_model_name=hf_model_name,
tokenizer=tokenizer)["inputs"][:,1:]
else:
w_bl_attacked_outputs = None
if limit_output_tokens > 0:
example["orig_baseline_completion"] = example["baseline_completion"]
example["orig_real_completion_length"] = example["real_completion_length"]
baseline_outputs = baseline_outputs[:,:limit_output_tokens]
example["real_completion_length"] = baseline_outputs.shape[1]
example["baseline_completion"] = tokenizer.batch_decode(baseline_outputs, skip_special_tokens=True)[0]
example["orig_no_bl_output"] = example["no_bl_output"]
example["orig_no_bl_num_tokens_generated"] = example["no_bl_num_tokens_generated"]
no_bl_outputs = no_bl_outputs[:,:limit_output_tokens]
example["no_bl_num_tokens_generated"] = no_bl_outputs.shape[1]
example["no_bl_output"] = tokenizer.batch_decode(no_bl_outputs, skip_special_tokens=True)[0]
example["orig_w_bl_output"] = example["w_bl_output"]
example["orig_w_bl_num_tokens_generated"] = example["w_bl_num_tokens_generated"]
w_bl_outputs = w_bl_outputs[:,:limit_output_tokens]
example["w_bl_num_tokens_generated"] = w_bl_outputs.shape[1]
example["w_bl_output"] = tokenizer.batch_decode(w_bl_outputs, skip_special_tokens=True)[0]
example["orig_spike_entropies"] = example["spike_entropies"]
example["spike_entropies"] = [example["spike_entropies"][0][:limit_output_tokens]]
if "w_bl_output_attacked" in example:
# raise NotImplementedError("Havent thought what to do yet for this")
example["orig_w_bl_output_attacked"] = example["w_bl_output_attacked"]
# example["orig_w_bl_attacked_num_tokens_generated"] = example["w_bl_attacked_num_tokens_generated"]
w_bl_attacked_outputs = w_bl_attacked_outputs[:,:limit_output_tokens]
example["w_bl_attacked_num_tokens_generated"] = w_bl_attacked_outputs.shape[1]
example["w_bl_output_attacked"] = tokenizer.batch_decode(w_bl_attacked_outputs, skip_special_tokens=True)[0]
# score the 3 sequence completions/outputs wrt to bl hits
result = score_sequence(inputs=inputs,
outputs=baseline_outputs, # <-- real text completions
initial_seed=initial_seed,
dynamic_seed=dynamic_seed,
bl_proportion=bl_proportion,
tokenizer=tokenizer,
use_cuda=use_cuda,
record_hits=record_hits,
debug=False)
if record_hits:
bl_hits, num_toks_gend, hit_list = result
else:
bl_hits, num_toks_gend = result
example.update({"baseline_num_toks_gend_eq_0":(num_toks_gend == 0)})
# if num_toks_gend < 0.99*example["real_completion_length"]: breakpoint()
# if len(hit_list) < 0.99*example["real_completion_length"]: breakpoint()
if num_toks_gend == 0:
# print("No tokens generated, odd, avoiding div by zero and returning -1's")
wl_frac = -1
bl_frac = -1
else:
wl_frac = (num_toks_gend-bl_hits)/num_toks_gend
bl_frac = bl_hits/num_toks_gend
baseline_stats = {
"baseline_whitelist_fraction": wl_frac,
"baseline_blacklist_fraction": bl_frac
}
example.update(baseline_stats)
if record_hits: example.update({"baseline_hit_list":hit_list})
result = score_sequence(inputs=inputs,
outputs=no_bl_outputs, # <-- non-blacklisted version
initial_seed=initial_seed,
dynamic_seed=dynamic_seed,
bl_proportion=bl_proportion,
tokenizer=tokenizer,
record_hits=record_hits,
debug=False)
if record_hits:
bl_hits, num_toks_gend, hit_list = result
else:
bl_hits, num_toks_gend = result
example.update({"no_bl_num_toks_gend_eq_0":(num_toks_gend == 0)})
# if num_toks_gend < 0.99*example["no_bl_num_tokens_generated"]: breakpoint()
# if len(hit_list) < 0.99*example["no_bl_num_tokens_generated"]: breakpoint()
if num_toks_gend == 0:
# print("No tokens generated, odd, avoiding div by zero and returning -1's")
wl_frac = -1
bl_frac = -1
else:
wl_frac = (num_toks_gend-bl_hits)/num_toks_gend
bl_frac = bl_hits/num_toks_gend
no_bl_stats = {
"no_bl_whitelist_fraction": wl_frac,
"no_bl_blacklist_fraction": bl_frac
}
example.update(no_bl_stats)
if record_hits: example.update({"no_bl_hit_list":hit_list})
result = score_sequence(inputs=inputs,
outputs=w_bl_outputs, # <-- blacklisted version
initial_seed=initial_seed,
dynamic_seed=dynamic_seed,
bl_proportion=bl_proportion,
tokenizer=tokenizer,
record_hits=record_hits,
# breakpoint_on_hit=True, # banging head against wall
debug=False)
if record_hits:
bl_hits, num_toks_gend, hit_list = result
else:
bl_hits, num_toks_gend = result
example.update({"w_bl_num_toks_gend_eq_0":(num_toks_gend == 0)})
# if num_toks_gend < 0.99*example["w_bl_num_tokens_generated"]: breakpoint()
# if len(hit_list) < 0.99*example["w_bl_num_tokens_generated"]: breakpoint()
if num_toks_gend == 0:
# print("No tokens generated, odd, avoiding div by zero and returning -1's")
wl_frac = -1
bl_frac = -1
else:
wl_frac = (num_toks_gend-bl_hits)/num_toks_gend
bl_frac = bl_hits/num_toks_gend
w_bl_stats = {
"w_bl_whitelist_fraction": wl_frac,
"w_bl_blacklist_fraction": bl_frac
}
example.update(w_bl_stats)
if record_hits: example.update({"w_bl_hit_list":hit_list})
if w_bl_attacked_outputs is not None:
result = score_sequence(inputs=inputs,
outputs=w_bl_attacked_outputs, # <-- blacklisted but attacked version
initial_seed=initial_seed,
dynamic_seed=dynamic_seed,
bl_proportion=bl_proportion,
tokenizer=tokenizer,
record_hits=record_hits,
# breakpoint_on_hit=True, # banging head against wall
debug=False)
if record_hits:
bl_hits, num_toks_gend, hit_list = result
else:
bl_hits, num_toks_gend = result
example.update({"w_bl_attacked_num_toks_gend_eq_0":(num_toks_gend == 0)})
# if (num_toks_gend-bl_hits)/(num_toks_gend) < 1.0: breakpoint()
if num_toks_gend == 0:
# print("No tokens generated, odd, avoiding div by zero and returning -1's")
wl_frac = -1
bl_frac = -1
else:
wl_frac = (num_toks_gend-bl_hits)/num_toks_gend
bl_frac = bl_hits/num_toks_gend
w_bl_attacked_stats = {
"w_bl_attacked_num_tokens_generated": num_toks_gend,
"w_bl_attacked_whitelist_fraction": wl_frac,
"w_bl_attacked_blacklist_fraction": bl_frac
}
example.update(w_bl_attacked_stats)
if record_hits: example.update({"w_bl_attacked_hit_list":hit_list})
return example
def aggregate_bl_stats(example: dict, idx: int, stat_table: dict):
stat_table["baseline_stats"]["whitelist_fraction"] += example["baseline_stats"]["whitelist_fraction"]
stat_table["baseline_stats"]["blacklist_fraction"] += example["baseline_stats"]["blacklist_fraction"]
stat_table["w_bl_stats"]["whitelist_fraction"] += example["w_bl_stats"]["whitelist_fraction"]
stat_table["w_bl_stats"]["blacklist_fraction"] += example["w_bl_stats"]["blacklist_fraction"]
stat_table["no_bl_stats"]["whitelist_fraction"] += example["no_bl_stats"]["whitelist_fraction"]
stat_table["no_bl_stats"]["blacklist_fraction"] += example["no_bl_stats"]["blacklist_fraction"]
stat_table["num_examples"] += 1
return example
def compute_ppl_single(prefix_and_output_text = None,
output_text = None,
oracle_model_name = None,
oracle_model = None,
oracle_tokenizer = None):
with torch.no_grad():
tokd_prefix = tokenize_and_truncate({"text":prefix_and_output_text}, completion_length=0, hf_model_name=oracle_model_name, tokenizer=oracle_tokenizer, model_max_seq_len=oracle_model.config.max_position_embeddings)["inputs"]
tokd_inputs = tokd_prefix
# if only want to score the "generation" part we need the suffix tokenization length
tokd_suffix = tokenize_and_truncate({"text":output_text}, completion_length=0, hf_model_name=oracle_model_name, tokenizer=oracle_tokenizer, model_max_seq_len=oracle_model.config.max_position_embeddings)["inputs"]
tokd_inputs = tokd_inputs.to(oracle_model.device)
# make labels, mark if not including all positions
tokd_labels = tokd_inputs.clone().detach()
tokd_labels[:,:tokd_labels.shape[1]-tokd_suffix.shape[1]+1] = -100
outputs = oracle_model(input_ids=tokd_inputs, labels=tokd_labels)
loss = outputs.loss # avg CE loss all positions (except -100, TODO plz check that this is working correctly)
ppl = torch.tensor(math.exp(loss))
return loss.item(), ppl.item()
def evaluate_generation_fluency(example: dict,
idx: int,
oracle_model_name = None,
oracle_model = None,
oracle_tokenizer = None):
# pull out the required fields from the pipeline results
inputs_plus_baseline_output = f"{example['truncated_input']}{example['baseline_completion']}"
baseline_output = f"{example['baseline_completion']}"
inputs_plus_no_bl_output = f"{example['truncated_input']}{example['no_bl_output']}"
no_bl_output = f"{example['no_bl_output']}"
inputs_plus_w_bl_output = f"{example['truncated_input']}{example['w_bl_output']}"
w_bl_output = f"{example['w_bl_output']}"
# add metrics
loss, ppl = compute_ppl_single(inputs_plus_baseline_output, baseline_output, oracle_model_name, oracle_model, oracle_tokenizer)
example["baseline_loss"] = loss
example["baseline_ppl"] = ppl
loss, ppl = compute_ppl_single(inputs_plus_no_bl_output, no_bl_output, oracle_model_name, oracle_model, oracle_tokenizer)
example["no_bl_loss"] = loss
example["no_bl_ppl"] = ppl
loss, ppl = compute_ppl_single(inputs_plus_w_bl_output, w_bl_output, oracle_model_name, oracle_model, oracle_tokenizer)
example["w_bl_loss"] = loss
example["w_bl_ppl"] = ppl
# del any temp values
return example
def add_idx(example,idx):
example.update({"idx":idx})
return example
def check_input_lengths(example,idx, min_sample_len=0, min_prompt_len=0, min_completion_len=0):
orig_sample_length = example["orig_sample_length"]
prompt_length = example["prompt_length"]
real_completion_length = example["real_completion_length"]
# breakpoint()
conds = all([
orig_sample_length >= min_sample_len,
prompt_length >= min_prompt_len,
real_completion_length >= min_completion_len,
])
return conds
def check_output_lengths(example,min_output_len=0):
no_bl_output_len = example["no_bl_num_tokens_generated"]
w_bl_output_len = example["w_bl_num_tokens_generated"]
conds = all([
no_bl_output_len >= min_output_len,
w_bl_output_len >= min_output_len,
])
return conds