Spaces:
Sleeping
Sleeping
File size: 6,599 Bytes
e0821c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import asyncio
import datetime
import logging
import os
import time
import traceback
import edge_tts
import gradio as gr
import librosa
import torch
from fairseq import checkpoint_utils
from huggingface_hub import snapshot_download
from config import Config
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"
config = Config()
# Edge TTS
edge_output_filename = "edge_output.mp3"
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
tts_voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
# RVC models
model_root = snapshot_download(repo_id="NoCrypt/miku_RVC", token=os.environ["TOKEN"])
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()
def model_data(model_name):
# global n_spk, tgt_sr, net_g, vc, cpt, version, index_file
pth_path = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".pth")
][0]
print(f"Loading {pth_path}")
cpt = torch.load(pth_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
else:
raise ValueError("Unknown version")
del net_g.enc_q
net_g.load_state_dict(cpt["weight"], strict=False)
print("Model loaded")
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
# n_spk = cpt["config"][-3]
index_files = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".index")
]
if len(index_files) == 0:
print("No index file found")
index_file = ""
else:
index_file = index_files[0]
print(f"Index file found: {index_file}")
return tgt_sr, net_g, vc, version, index_file, if_f0
def load_hubert():
# global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
return hubert_model.eval()
def tts(
model_name,
speed,
tts_text,
tts_voice,
f0_up_key,
f0_method,
index_rate,
protect,
filter_radius=3,
resample_sr=0,
rms_mix_rate=0.25,
):
print("------------------")
print(datetime.datetime.now())
print("tts_text:")
print(tts_text)
print(f"tts_voice: {tts_voice}, speed: {speed}")
print(f"Model name: {model_name}")
print(f"F0: {f0_method}, Key: {f0_up_key}, Index: {index_rate}, Protect: {protect}")
try:
if limitation and len(tts_text) > 1000:
print("Error: Text too long")
return (
f"Text characters should be at most 1000 in this huggingface space, but got {len(tts_text)} characters.",
None,
None,
)
t0 = time.time()
if speed >= 0:
speed_str = f"+{speed}%"
else:
speed_str = f"{speed}%"
asyncio.run(
edge_tts.Communicate(
tts_text, "-".join(tts_voice.split("-")[:-1]), rate=speed_str
).save(edge_output_filename)
)
t1 = time.time()
edge_time = t1 - t0
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)
duration = len(audio) / sr
print(f"Audio duration: {duration}s")
if limitation and duration >= 200:
print("Error: Audio too long")
return (
f"Audio should be less than 200 seconds in this huggingface space, but got {duration}s.",
edge_output_filename,
None,
)
f0_up_key = int(f0_up_key)
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)
if f0_method == "rmvpe":
vc.model_rmvpe = rmvpe_model
times = [0, 0, 0]
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
edge_output_filename,
times,
f0_up_key,
f0_method,
index_file,
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
None,
)
if tgt_sr != resample_sr >= 16000:
tgt_sr = resample_sr
info = f"Success. Time: edge-tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
print(info)
return (
info,
edge_output_filename,
(tgt_sr, audio_opt),
)
except EOFError:
info = (
"It seems that the edge-tts output is not valid. "
"This may occur when the input text and the speaker do not match. "
"For example, maybe you entered Japanese (without alphabets) text but chose non-Japanese speaker?"
)
print(info)
return info, None, None
except:
info = traceback.format_exc()
print(info)
return info, None, None
print("Loading hubert model...")
hubert_model = load_hubert()
print("Hubert model loaded.")
print("Loading rmvpe model...")
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
print("rmvpe model loaded.") |