Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -129,13 +129,6 @@ def tts(
|
|
129 |
print(f"Model name: {model_name}")
|
130 |
print(f"F0: {f0_method}, Key: {f0_up_key}, Index: {index_rate}, Protect: {protect}")
|
131 |
try:
|
132 |
-
if limitation and len(tts_text) > 280:
|
133 |
-
print("Error: Text too long")
|
134 |
-
return (
|
135 |
-
f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.",
|
136 |
-
None,
|
137 |
-
None,
|
138 |
-
)
|
139 |
t0 = time.time()
|
140 |
if speed >= 0:
|
141 |
speed_str = f"+{speed}%"
|
@@ -217,19 +210,7 @@ rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
|
|
217 |
print("rmvpe model loaded.")
|
218 |
|
219 |
initial_md = """
|
220 |
-
#
|
221 |
-
|
222 |
-
This is a text-to-speech demo of RVC moe models of [rvc_okiba](https://huggingface.co/litagin/rvc_okiba) using [edge-tts](https://github.com/rany2/edge-tts).
|
223 |
-
|
224 |
-
Input text ➡[(edge-tts)](https://github.com/rany2/edge-tts)➡ Speech mp3 file ➡[(RVC)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)➡ Final output
|
225 |
-
|
226 |
-
This runs on the 🤗 server's cpu, so it may be slow.
|
227 |
-
|
228 |
-
Although the models are trained on Japanese voices and intended for Japanese text, they can also be used with other languages with the corresponding edge-tts speaker (but possibly with a Japanese accent).
|
229 |
-
|
230 |
-
Input characters are limited to 280 characters, and the speech audio is limited to 20 seconds in this 🤗 space.
|
231 |
-
|
232 |
-
[Visit this GitHub repo](https://github.com/litagin02/rvc-tts-webui) for running locally with your models and GPU!
|
233 |
"""
|
234 |
|
235 |
app = gr.Blocks()
|
@@ -305,64 +286,5 @@ with app:
|
|
305 |
],
|
306 |
[info_text, edge_tts_output, tts_output],
|
307 |
)
|
308 |
-
with gr.Row():
|
309 |
-
examples = gr.Examples(
|
310 |
-
examples_per_page=100,
|
311 |
-
examples=[
|
312 |
-
["これは日本語テキストから音声への変換デモです。", "ja-JP-NanamiNeural-Female"],
|
313 |
-
[
|
314 |
-
"This is an English text to speech conversation demo.",
|
315 |
-
"en-US-AriaNeural-Female",
|
316 |
-
],
|
317 |
-
["这是一个中文文本到语音的转换演示。", "zh-CN-XiaoxiaoNeural-Female"],
|
318 |
-
["한국어 텍스트에서 음성으로 변환하는 데모입니다.", "ko-KR-SunHiNeural-Female"],
|
319 |
-
[
|
320 |
-
"Il s'agit d'une démo de conversion du texte français à la parole.",
|
321 |
-
"fr-FR-DeniseNeural-Female",
|
322 |
-
],
|
323 |
-
[
|
324 |
-
"Dies ist eine Demo zur Umwandlung von Deutsch in Sprache.",
|
325 |
-
"de-DE-AmalaNeural-Female",
|
326 |
-
],
|
327 |
-
[
|
328 |
-
"Tämä on suomenkielinen tekstistä puheeksi -esittely.",
|
329 |
-
"fi-FI-NooraNeural-Female",
|
330 |
-
],
|
331 |
-
[
|
332 |
-
"Это демонстрационный пример преобразования русского текста в речь.",
|
333 |
-
"ru-RU-SvetlanaNeural-Female",
|
334 |
-
],
|
335 |
-
[
|
336 |
-
"Αυτή είναι μια επίδειξη μετατροπής ελληνικού κειμένου σε ομιλία.",
|
337 |
-
"el-GR-AthinaNeural-Female",
|
338 |
-
],
|
339 |
-
[
|
340 |
-
"Esta es una demostración de conversión de texto a voz en español.",
|
341 |
-
"es-ES-ElviraNeural-Female",
|
342 |
-
],
|
343 |
-
[
|
344 |
-
"Questa è una dimostrazione di sintesi vocale in italiano.",
|
345 |
-
"it-IT-ElsaNeural-Female",
|
346 |
-
],
|
347 |
-
[
|
348 |
-
"Esta é uma demonstração de conversão de texto em fala em português.",
|
349 |
-
"pt-PT-RaquelNeural-Female",
|
350 |
-
],
|
351 |
-
[
|
352 |
-
"Це демонстрація тексту до мовлення українською мовою.",
|
353 |
-
"uk-UA-PolinaNeural-Female",
|
354 |
-
],
|
355 |
-
[
|
356 |
-
"هذا عرض توضيحي عربي لتحويل النص إلى كلام.",
|
357 |
-
"ar-EG-SalmaNeural-Female",
|
358 |
-
],
|
359 |
-
[
|
360 |
-
"இது தமிழ் உரையிலிருந்து பேச்சு மாற்ற டெமோ.",
|
361 |
-
"ta-IN-PallaviNeural-Female",
|
362 |
-
],
|
363 |
-
],
|
364 |
-
inputs=[tts_text, tts_voice],
|
365 |
-
)
|
366 |
-
|
367 |
|
368 |
app.launch()
|
|
|
129 |
print(f"Model name: {model_name}")
|
130 |
print(f"F0: {f0_method}, Key: {f0_up_key}, Index: {index_rate}, Protect: {protect}")
|
131 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
t0 = time.time()
|
133 |
if speed >= 0:
|
134 |
speed_str = f"+{speed}%"
|
|
|
210 |
print("rmvpe model loaded.")
|
211 |
|
212 |
initial_md = """
|
213 |
+
# Miku TTS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
"""
|
215 |
|
216 |
app = gr.Blocks()
|
|
|
286 |
],
|
287 |
[info_text, edge_tts_output, tts_output],
|
288 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
app.launch()
|