Spaces:
Runtime error
Runtime error
import os | |
import threading | |
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' | |
from music.search import get_random_spit, get_albums, search_youtube, download_youtube, get_youtube, download_random | |
from vits.models import SynthesizerInfer | |
import whisper.inference | |
from omegaconf import OmegaConf | |
import torchcrepe | |
import torch | |
import io | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import soundfile | |
from spleeter.separator import Separator | |
from spleeter.audio.adapter import AudioAdapter | |
from pydub import AudioSegment | |
import uuid | |
import logging | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
logging.getLogger('markdown_it').setLevel(logging.WARNING) | |
logging.getLogger('urllib3').setLevel(logging.WARNING) | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
def load_svc_model(checkpoint_path, model): | |
assert os.path.isfile(checkpoint_path) | |
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
saved_state_dict = checkpoint_dict["model_g"] | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
new_state_dict[k] = saved_state_dict[k] | |
model.load_state_dict(new_state_dict) | |
return model | |
def compute_f0_nn(filename, device): | |
audio, sr = librosa.load(filename, sr=16000) | |
assert sr == 16000 | |
# Load audio | |
audio = torch.tensor(np.copy(audio))[None] | |
# Here we'll use a 20 millisecond hop length | |
hop_length = 320 | |
# Provide a sensible frequency range for your domain (upper limit is 2006 Hz) | |
# This would be a reasonable range for speech | |
fmin = 50 | |
fmax = 1000 | |
# Select a model capacity--one of "tiny" or "full" | |
model = "full" | |
# Pick a batch size that doesn't cause memory errors on your gpu | |
batch_size = 512 | |
# Compute pitch using first gpu | |
pitch, periodicity = torchcrepe.predict( | |
audio, | |
sr, | |
hop_length, | |
fmin, | |
fmax, | |
model, | |
batch_size=batch_size, | |
device=device, | |
return_periodicity=True, | |
) | |
pitch = np.repeat(pitch, 2, -1) # 320 -> 160 * 2 | |
periodicity = np.repeat(periodicity, 2, -1) # 320 -> 160 * 2 | |
# CREPE was not trained on silent audio. some error on silent need filter. | |
periodicity = torchcrepe.filter.median(periodicity, 9) | |
pitch = torchcrepe.filter.mean(pitch, 9) | |
pitch[periodicity < 0.1] = 0 | |
pitch = pitch.squeeze(0) | |
return pitch | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
hp = OmegaConf.load("configs/base.yaml") | |
model = SynthesizerInfer( | |
hp.data.filter_length // 2 + 1, | |
hp.data.segment_size // hp.data.hop_length, | |
hp) | |
load_svc_model("vits_pretrain/sovits5.0-48k-debug.pth", model) | |
model.eval() | |
model.to(device) | |
separator = Separator('spleeter:2stems') | |
audio_loader = AudioAdapter.default() | |
whisper_model = whisper.inference.load_model(os.path.join("whisper_pretrain", "medium.pt")) | |
# warm up | |
separator.separate_to_file('warm.wav', '/tmp/warm') | |
def svc_change(argswave, argsspk): | |
argsppg = "svc_tmp.ppg.npy" | |
whisper.inference.pred_ppg(whisper_model, argswave, argsppg) | |
# os.system(f"python whisper/inference.py -w {argswave} -p {argsppg}") | |
spk = np.load(argsspk) | |
spk = torch.FloatTensor(spk) | |
ppg = np.load(argsppg) | |
ppg = np.repeat(ppg, 2, 0) # 320 PPG -> 160 * 2 | |
ppg = torch.FloatTensor(ppg) | |
pit = compute_f0_nn(argswave, device) | |
pit = torch.FloatTensor(pit) | |
len_pit = pit.size()[0] | |
len_ppg = ppg.size()[0] | |
len_min = min(len_pit, len_ppg) | |
pit = pit[:len_min] | |
ppg = ppg[:len_min, :] | |
with torch.no_grad(): | |
spk = spk.unsqueeze(0).to(device) | |
source = pit.unsqueeze(0).to(device) | |
source = model.pitch2source(source) | |
hop_size = hp.data.hop_length | |
all_frame = len_min | |
hop_frame = 10 | |
out_chunk = 2500 # 25 S | |
out_index = 0 | |
out_audio = [] | |
has_audio = False | |
while out_index + out_chunk < all_frame: | |
has_audio = True | |
if out_index == 0: # start frame | |
cut_s = out_index | |
cut_s_48k = 0 | |
else: | |
cut_s = out_index - hop_frame | |
cut_s_48k = hop_frame * hop_size | |
if out_index + out_chunk + hop_frame > all_frame: # end frame | |
cut_e = out_index + out_chunk | |
cut_e_48k = 0 | |
else: | |
cut_e = out_index + out_chunk + hop_frame | |
cut_e_48k = -1 * hop_frame * hop_size | |
sub_ppg = ppg[cut_s:cut_e, :].unsqueeze(0).to(device) | |
sub_pit = pit[cut_s:cut_e].unsqueeze(0).to(device) | |
sub_len = torch.LongTensor([cut_e - cut_s]).to(device) | |
sub_har = source[:, :, cut_s * | |
hop_size:cut_e * hop_size].to(device) | |
sub_out = model.inference(sub_ppg, sub_pit, spk, sub_len, sub_har) | |
sub_out = sub_out[0, 0].data.cpu().detach().numpy() | |
sub_out = sub_out[cut_s_48k:cut_e_48k] | |
out_audio.extend(sub_out) | |
out_index = out_index + out_chunk | |
if out_index < all_frame: | |
if has_audio: | |
cut_s = out_index - hop_frame | |
cut_s_48k = hop_frame * hop_size | |
else: | |
cut_s = 0 | |
cut_s_48k = 0 | |
sub_ppg = ppg[cut_s:, :].unsqueeze(0).to(device) | |
sub_pit = pit[cut_s:].unsqueeze(0).to(device) | |
sub_len = torch.LongTensor([all_frame - cut_s]).to(device) | |
sub_har = source[:, :, cut_s * hop_size:].to(device) | |
sub_out = model.inference(sub_ppg, sub_pit, spk, sub_len, sub_har) | |
sub_out = sub_out[0, 0].data.cpu().detach().numpy() | |
sub_out = sub_out[cut_s_48k:] | |
out_audio.extend(sub_out) | |
out_audio = np.asarray(out_audio) | |
return out_audio | |
def svc_main(sid, input_audio): | |
if input_audio is None: | |
return "You need to upload an audio", None | |
sampling_rate, audio = input_audio | |
integer_dtypes = [np.int8, np.int16, np.int32, np.int64] | |
if audio.dtype in integer_dtypes: | |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
uuid_value = uuid.uuid4() | |
uuid_string = str(uuid_value) | |
input_audio_tmp_file = f'{uuid_string}.wav' | |
tmpfile_path = '/tmp' | |
# | |
# prediction = separator.separate(audio) | |
# vocals, accompaniment = prediction["vocals"], prediction["accompaniment"] | |
soundfile.write(input_audio_tmp_file, audio, sampling_rate, format="wav") | |
if not os.path.exists(tmpfile_path): | |
os.makedirs(tmpfile_path) | |
separator.separate_to_file(input_audio_tmp_file, tmpfile_path) | |
curr_tmp_path = os.path.join(tmpfile_path, os.path.splitext(input_audio_tmp_file)[0]) | |
vocals_filepath = os.path.join(curr_tmp_path, 'vocals.wav') | |
accompaniment_filepath = os.path.join(curr_tmp_path, 'accompaniment.wav') | |
vocals, sampling_rate = soundfile.read(vocals_filepath) | |
if len(vocals.shape) > 1: | |
vocals = librosa.to_mono(vocals.transpose(1, 0)) | |
if sampling_rate != 16000: | |
vocals = librosa.resample(vocals, orig_sr=sampling_rate, target_sr=16000) | |
if len(vocals) > 16000 * 100: | |
vocals = vocals[:16000 * 100] | |
wav_path = os.path.join(curr_tmp_path, "temp.wav") | |
soundfile.write(wav_path, vocals, 16000, format="wav") | |
out_vocals = svc_change(wav_path, f"configs/singers/singer00{sid}.npy") | |
out_vocals_filepath = os.path.join(curr_tmp_path, 'out_vocals.wav') | |
soundfile.write(out_vocals_filepath, out_vocals, 48000, format="wav") | |
print(f"out_vocals_filepath: {out_vocals_filepath}") | |
print("start to mix") | |
sound1 = AudioSegment.from_file(out_vocals_filepath) | |
sound2 = AudioSegment.from_file(accompaniment_filepath) | |
played_togther = sound1.overlay(sound2) | |
print("mix done") | |
result_path = os.path.join(curr_tmp_path, 'out_song.wav') | |
played_togther.export(result_path, format="wav") | |
print(f"result_path: {result_path}") | |
result, sampling_rate = soundfile.read(result_path, dtype=np.int16) | |
return "Success", (sampling_rate, result) | |
def auto_search(name): | |
save_music_path = '/tmp/downloaded' | |
if not os.path.exists(save_music_path): | |
os.makedirs(save_music_path) | |
config = {'logfilepath': 'musicdl.log', save_music_path: save_music_path, 'search_size_per_source': 5, 'proxies': {}} | |
save_path = os.path.join(save_music_path, name + '.mp3') | |
# youtube | |
get_youtube(name, os.path.join(save_music_path, name)) | |
# task1 = threading.Thread( | |
# target=get_youtube, | |
# args=(name, os.path.join(save_music_path, name)) | |
# ) | |
# task1.start() | |
# task2 = threading.Thread( | |
# target=download_random, | |
# args=(name, config, save_path) | |
# ) | |
# task2.start() | |
# task1.join(timeout=20) | |
# task2.join(timeout=10) | |
if not os.path.exists(save_path): | |
return "Not Found", None | |
signal, sampling_rate = soundfile.read(save_path, dtype=np.int16) | |
# signal, sampling_rate = open_audio(save_path) | |
return "Found a music", (sampling_rate, signal) | |
app = gr.Blocks() | |
with app: | |
title = "Singer Voice Clone 0.1 Demo" | |
desc = """ small singer voice clone Demo App. <br /> | |
Enter keywords auto search music to clone or upload music yourself <br /> | |
It's just a simplified demo, you can use more advanced features optimize music quality <br />""" | |
tutorial_link = "https://docs.cworld.ai" | |
gr.HTML( | |
f""" | |
<div style="text-align: center; margin: 0 auto;"> | |
<a href="https://cworld.ai"> | |
<svg style="margin: 0 auto;" width="155" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 407 100"> | |
<g id="SvgjsG2746" | |
transform="matrix(0.8454106280193237,0,0,0.8454106280193237,-4.2270531400966185,-4.2270531400966185)" | |
fill="#111"> | |
<g xmlns="http://www.w3.org/2000/svg"> | |
<g> | |
<g> | |
<path d="M50,11c21.5,0,39,17.5,39,39S71.5,89,50,89S11,71.5,11,50S28.5,11,50,11 M50,5C25.1,5,5,25.1,5,50s20.1,45,45,45 s45-20.1,45-45S74.9,5,50,5L50,5z"></path> | |
</g> | |
</g> | |
<path d="M55,75H45v-5c0-2.8,2.2-5,5-5h0c2.8,0,5,2.2,5,5V75z"></path> | |
<rect x="25" y="35" width="10" height="20"></rect> | |
<rect x="65" y="35" width="10" height="20"></rect> | |
</g> | |
</g> | |
<g id="SvgjsG2747" | |
transform="matrix(3.3650250410766605,0,0,3.3650250410766605,93.98098208712985,-3.546415304677616)" | |
fill="#111"> | |
<path | |
d="M8.1 17.42 l1.42 1.28 c-0.94 1.04 -2.28 1.5 -3.78 1.5 c-2.84 0 -5.14 -2.18 -5.14 -5.12 s2.3 -5.14 5.14 -5.14 c1.5 0 2.84 0.46 3.78 1.5 l-1.42 1.28 c-0.58 -0.78 -1.42 -1.08 -2.36 -1.08 c-1.7 0 -3.08 1.42 -3.08 3.44 c0 2 1.38 3.44 3.08 3.44 c0.94 0 1.78 -0.3 2.36 -1.1 z M23.42 10.12 l2.06 0 l-3.76 9.88 l-1.26 0 l-2.46 -6.4 l-2.44 6.4 l-1.26 0 l-3.78 -9.88 l2.08 0 l2.34 6.9 l2.06 -6.08 l0.26 -0.82 l1.48 0 l0.28 0.82 l2.06 6.08 z M31.62 11.64 c-1.7 0 -3.08 1.42 -3.08 3.44 c0 2 1.38 3.44 3.08 3.44 s3.08 -1.44 3.08 -3.44 c0 -2.02 -1.38 -3.44 -3.08 -3.44 z M31.62 9.94 c2.84 0 5.14 2.2 5.14 5.14 s-2.3 5.12 -5.14 5.12 s-5.14 -2.18 -5.14 -5.12 s2.3 -5.14 5.14 -5.14 z M44.9 10.24 l-0.44 1.62 c-0.14 -0.08 -0.58 -0.22 -0.94 -0.22 c-1.7 0 -2.5 1.62 -2.5 3.62 l0 4.74 l-2.06 0 l0 -9.88 l2.06 0 l0 1.4 c0.24 -0.92 1.3 -1.58 2.48 -1.58 c0.54 0 1.12 0.14 1.4 0.3 z M48.379999999999995 4.619999999999999 l0 15.38 l-2.08 0 l0 -15.38 l2.08 0 z M50.98 15.08 c0 -2.94 2.1 -5.14 4.94 -5.14 c0.98 0 2.18 0.42 2.84 0.96 l0 -5.9 l2.08 0 l0 15 l-2.08 0 l0 -0.74 c-0.78 0.58 -1.86 0.94 -2.84 0.94 c-2.84 0 -4.94 -2.18 -4.94 -5.12 z M53.06 15.08 c0 2 1.38 3.44 3.06 3.44 c1.12 0 2.12 -0.52 2.64 -1.58 c0.28 -0.54 0.44 -1.18 0.44 -1.86 s-0.16 -1.32 -0.44 -1.88 c-0.52 -1.06 -1.52 -1.56 -2.64 -1.56 c-1.68 0 -3.06 1.42 -3.06 3.44 z M66.46 18.78 c0 0.8 -0.62 1.42 -1.42 1.42 c-0.78 0 -1.4 -0.62 -1.4 -1.42 c0 -0.76 0.62 -1.38 1.4 -1.38 c0.8 0 1.42 0.62 1.42 1.38 z M73.08 9.92 c2.84 0 3.98 1.72 3.98 3.18 l0 6.9 l-2.06 0 l0 -1.08 c-0.72 0.98 -2 1.26 -2.8 1.26 c-2.26 0 -3.74 -1.32 -3.74 -3.08 c0 -2.46 1.84 -3.34 3.74 -3.34 l2.8 0 l0 -0.66 c0 -0.62 -0.24 -1.48 -1.92 -1.48 c-0.94 0 -1.8 0.5 -2.36 1.28 l-1.42 -1.28 c0.94 -1.04 2.28 -1.7 3.78 -1.7 z M75 16.92 l0 -1.48 l-2.52 0 c-1.22 0 -2.08 0.62 -1.94 1.74 c0.12 0.94 0.88 1.32 1.94 1.32 c1.9 0 2.52 -0.9 2.52 -1.58 z M81.9 10.12 l0 9.88 l-2.06 0 l0 -9.88 l2.06 0 z M82 6.5 c0 0.64 -0.5 1.14 -1.14 1.14 c-0.62 0 -1.12 -0.5 -1.12 -1.14 c0 -0.62 0.5 -1.12 1.12 -1.12 c0.64 0 1.14 0.5 1.14 1.12 z"></path> | |
</g> | |
</svg> | |
</a> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px"> | |
{title} | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;"> | |
{desc} | |
There is the <a href="{tutorial_link}"> tutorial </a> | |
</p> | |
</div> | |
""" | |
) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(): | |
sid = gr.Dropdown(label="Singer", choices=["22", "33", "47", "51"], value="47") | |
vc_input2 = gr.Textbox(label="Music Name") | |
vc_search = gr.Button("Auto Search", variant="primary") | |
with gr.Column(): | |
vc_input3 = gr.Audio(label="Upload Music Yourself") | |
vc_submit = gr.Button("Convert", variant="primary") | |
with gr.Column(): | |
vc_output1 = gr.Textbox(label="Run Status") | |
vc_output2 = gr.Audio(label="Result Audio") | |
vc_search.click(auto_search, [vc_input2], [vc_output1, vc_input3]) | |
vc_submit.click(svc_main, [sid, vc_input3], [vc_output1, vc_output2]) | |
app.launch() | |