Spaces:
Running
Running
Initial setup
Browse filesInitial file set up
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from openai import OpenAI
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from langchain.callbacks import StreamlitCallbackHandler
|
6 |
+
from dotenv import load_dotenv, dotenv_values
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
|
10 |
+
if 'key' not in st.session_state:
|
11 |
+
st.session_state['key'] = 'value'
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
# initialize the client but point it to TGI
|
17 |
+
client = OpenAI(
|
18 |
+
base_url="https://api-inference.huggingface.co/v1",
|
19 |
+
#api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
#Create supported models
|
26 |
+
model_links ={
|
27 |
+
"Mistral":"mistralai/Mistral-7B-Instruct-v0.2",
|
28 |
+
"Gemma":"google/gemma-7b-it"
|
29 |
+
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
# Define the available models
|
35 |
+
# models = ["Mistral", "Gemma"]
|
36 |
+
models =[key for key in model_links.keys()]
|
37 |
+
|
38 |
+
# Create the sidebar with the dropdown for model selection
|
39 |
+
selected_model = st.sidebar.selectbox("Select Model", models)
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
#Pull in the model we want to use
|
44 |
+
repo_id = model_links[selected_model]
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
st.title(f'ChatBot Using {selected_model}')
|
49 |
+
|
50 |
+
# Set a default model
|
51 |
+
if selected_model not in st.session_state:
|
52 |
+
st.session_state[selected_model] = model_links[selected_model] #"google/gemma-7b-it"
|
53 |
+
|
54 |
+
# Initialize chat history
|
55 |
+
if "messages" not in st.session_state:
|
56 |
+
st.session_state.messages = []
|
57 |
+
|
58 |
+
|
59 |
+
# Display chat messages from history on app rerun
|
60 |
+
for message in st.session_state.messages:
|
61 |
+
with st.chat_message(message["role"]):
|
62 |
+
st.markdown(message["content"])
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
# Accept user input
|
67 |
+
if prompt := st.chat_input("What is up?"):
|
68 |
+
|
69 |
+
# Display user message in chat message container
|
70 |
+
with st.chat_message("user"):
|
71 |
+
st.markdown(prompt)
|
72 |
+
# Add user message to chat history
|
73 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
74 |
+
|
75 |
+
|
76 |
+
# Display assistant response in chat message container
|
77 |
+
with st.chat_message("assistant"):
|
78 |
+
st_callback = StreamlitCallbackHandler(st.container())
|
79 |
+
# st_callback =stream_handler
|
80 |
+
|
81 |
+
|
82 |
+
# stream = client.completions.create(
|
83 |
+
# model="google/gemma-7b-it",
|
84 |
+
# prompt="You are a helpful agent in a question answer exhange. Give you best answer to the questions. {prompt}",
|
85 |
+
# # messages=[
|
86 |
+
# # {"role": m["role"], "content": m["content"]}
|
87 |
+
# # for m in st.session_state.messages
|
88 |
+
# # ],
|
89 |
+
# temperature=0.5,
|
90 |
+
# stream=True,
|
91 |
+
# max_tokens=3000
|
92 |
+
# )
|
93 |
+
|
94 |
+
|
95 |
+
stream = client.chat.completions.create(
|
96 |
+
model=model_links[selected_model],#"google/gemma-7b-it",
|
97 |
+
messages=[
|
98 |
+
{"role": m["role"], "content": m["content"]}
|
99 |
+
for m in st.session_state.messages
|
100 |
+
],
|
101 |
+
temperature=0.5,
|
102 |
+
stream=True,
|
103 |
+
max_tokens=3000,
|
104 |
+
)
|
105 |
+
|
106 |
+
response = st.write_stream(stream)
|
107 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|