Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- cgi_classification_app.py +180 -46
- wavelet_classifier.pkl +3 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
cgi_classification_app.py
CHANGED
@@ -8,63 +8,197 @@ Original file is located at
|
|
8 |
"""
|
9 |
|
10 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from PIL import Image
|
|
|
12 |
import numpy as np
|
13 |
-
from PIL import Image
|
14 |
-
from scipy.fftpack import fft2
|
15 |
-
from tensorflow.keras.models import load_model, Model
|
16 |
from xgboost import XGBClassifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# Function to apply Fourier transform
|
24 |
-
def apply_fourier_transform(image):
|
25 |
-
image = np.array(image)
|
26 |
-
fft_image = fft2(image)
|
27 |
-
return np.abs(fft_image)
|
28 |
-
|
29 |
-
|
30 |
-
def preprocess_image(image):
|
31 |
-
try:
|
32 |
-
image = Image.fromarray(image)
|
33 |
-
image = image.convert("L")
|
34 |
-
image = image.resize((256, 256))
|
35 |
-
image = apply_fourier_transform(image)
|
36 |
-
image = np.expand_dims(
|
37 |
-
image, axis=-1
|
38 |
-
) # Expand dimensions to match model input shape
|
39 |
-
image = np.expand_dims(image, axis=0) # Expand to add batch dimension
|
40 |
-
return image
|
41 |
-
except Exception as e:
|
42 |
-
print(f"Error processing image: {e}")
|
43 |
-
return None
|
44 |
-
|
45 |
-
|
46 |
-
# Function to load embedding model and calculate embeddings
|
47 |
-
def calculate_embeddings(image, model_path="embedding_modelv2.keras"):
|
48 |
-
# Load the trained model
|
49 |
-
model = load_model(model_path)
|
50 |
-
|
51 |
-
# Remove the final classification layer to get embeddings
|
52 |
-
embedding_model = Model(inputs=model.input, outputs=model.output)
|
53 |
|
54 |
-
# Preprocess the image
|
55 |
-
preprocessed_image = preprocess_image(image)
|
56 |
-
# Calculate embeddings
|
57 |
-
embeddings = embedding_model.predict(preprocessed_image)
|
58 |
|
59 |
-
|
60 |
|
61 |
|
62 |
def classify_image(image):
|
63 |
-
|
|
|
64 |
# Convert to 2D array for model input
|
65 |
-
probabilities = xgb_clf.predict_proba(embeddings)[0]
|
66 |
labels = ["Photo", "CGI"]
|
67 |
-
return {f"{labels[i]}": prob for i, prob in enumerate(probabilities)}
|
68 |
|
69 |
|
70 |
interface = gr.Interface(
|
|
|
8 |
"""
|
9 |
|
10 |
import gradio as gr
|
11 |
+
|
12 |
+
from sklearn.model_selection import train_test_split
|
13 |
+
from sklearn.metrics import (
|
14 |
+
accuracy_score,
|
15 |
+
f1_score,
|
16 |
+
confusion_matrix,
|
17 |
+
ConfusionMatrixDisplay,
|
18 |
+
)
|
19 |
+
from sklearn.preprocessing import StandardScaler
|
20 |
+
from sklearn.decomposition import PCA
|
21 |
+
import umap
|
22 |
+
import pywt
|
23 |
+
import os
|
24 |
from PIL import Image
|
25 |
+
import matplotlib.pyplot as plt
|
26 |
import numpy as np
|
|
|
|
|
|
|
27 |
from xgboost import XGBClassifier
|
28 |
+
from sklearn.model_selection import cross_val_score, KFold
|
29 |
+
from sklearn.dummy import DummyClassifier
|
30 |
+
from sklearn.ensemble import RandomForestClassifier
|
31 |
+
from sklearn.svm import SVC
|
32 |
+
from sklearn.neighbors import KNeighborsClassifier
|
33 |
+
from sklearn.model_selection import train_test_split
|
34 |
+
from sklearn.metrics import classification_report
|
35 |
+
import plotly.express as px
|
36 |
+
import pandas as pd
|
37 |
+
import joblib
|
38 |
+
from tqdm import tqdm
|
39 |
+
import lzma
|
40 |
+
|
41 |
+
|
42 |
+
class WaveletClassifier:
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
wavelets=["db4", "db10"],
|
46 |
+
umap_n_neighbors=16,
|
47 |
+
umap_n_components=32,
|
48 |
+
random_state=42,
|
49 |
+
):
|
50 |
+
self.wavelets = wavelets
|
51 |
+
self.umap_n_neighbors = umap_n_neighbors
|
52 |
+
self.umap_n_components = umap_n_components
|
53 |
+
self.random_state = random_state
|
54 |
+
self.reducer = umap.UMAP(
|
55 |
+
n_neighbors=self.umap_n_neighbors,
|
56 |
+
n_components=self.umap_n_components,
|
57 |
+
random_state=self.random_state,
|
58 |
+
)
|
59 |
+
self.classifier = KNeighborsClassifier(n_neighbors=7) # Default classifier
|
60 |
+
|
61 |
+
def load_images_from_folder(self, folder):
|
62 |
+
images = []
|
63 |
+
labels = []
|
64 |
+
print(f"Loading images from {folder}")
|
65 |
+
for filename in tqdm(os.listdir(folder)):
|
66 |
+
if not (
|
67 |
+
filename.endswith(".jpg")
|
68 |
+
or filename.endswith(".png")
|
69 |
+
or filename.endswith("jpeg")
|
70 |
+
or filename.endswith("webp")
|
71 |
+
):
|
72 |
+
continue
|
73 |
+
img = Image.open(os.path.join(folder, filename))
|
74 |
+
img = img.resize((512, 512))
|
75 |
+
if img is not None:
|
76 |
+
images.append(img)
|
77 |
+
labels.append(
|
78 |
+
1 if "CGI" in folder else 0
|
79 |
+
) # Assuming folder names contain "AI" or not
|
80 |
+
return images, labels
|
81 |
+
|
82 |
+
def extract_wavelet_features(self, images):
|
83 |
+
all_features = []
|
84 |
+
for img in images:
|
85 |
+
img_gray = img.convert("L")
|
86 |
+
img_array = np.array(img_gray)
|
87 |
+
features = []
|
88 |
+
for wavelet in self.wavelets:
|
89 |
+
cA, cD = pywt.dwt(img_array, wavelet)
|
90 |
+
features.extend(cD.flatten())
|
91 |
+
all_features.append(features)
|
92 |
+
return np.array(all_features)
|
93 |
+
|
94 |
+
def fit(self, train_folder1, train_folder2):
|
95 |
+
# Load images and extract features
|
96 |
+
images1, labels1 = self.load_images_from_folder(train_folder1)
|
97 |
+
images2, labels2 = self.load_images_from_folder(train_folder2)
|
98 |
+
|
99 |
+
min_length = min(len(images1), len(images2))
|
100 |
+
images1 = images1[:min_length]
|
101 |
+
images2 = images2[:min_length]
|
102 |
+
labels1 = labels1[:min_length]
|
103 |
+
labels2 = labels2[:min_length]
|
104 |
+
|
105 |
+
images = images1 + images2
|
106 |
+
labels = labels1 + labels2
|
107 |
+
features = self.extract_wavelet_features(images)
|
108 |
+
|
109 |
+
# Apply UMAP dimensionality reduction
|
110 |
+
embeddings = self.reducer.fit_transform(features)
|
111 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
112 |
+
embeddings, labels, test_size=0.2, random_state=42
|
113 |
+
)
|
114 |
+
|
115 |
+
# Train the classifier
|
116 |
+
self.classifier.fit(X_train, y_train)
|
117 |
+
|
118 |
+
acc = self.classifier.score(X_test, y_test)
|
119 |
+
y_pred = self.classifier.predict(X_test)
|
120 |
+
print(f"Classifier accuracy = {acc}")
|
121 |
+
|
122 |
+
f1 = f1_score(y_test, y_pred)
|
123 |
+
print(f"Classifier F1 = {f1}")
|
124 |
+
print(classification_report(y_test, y_pred))
|
125 |
+
|
126 |
+
def predict(self, images):
|
127 |
+
# Load images and extract features
|
128 |
+
features = self.extract_wavelet_features(images)
|
129 |
+
|
130 |
+
# Apply UMAP dimensionality reduction
|
131 |
+
embeddings = self.reducer.transform(features)
|
132 |
+
|
133 |
+
# Make predictions
|
134 |
+
return self.classifier.predict(embeddings)
|
135 |
+
|
136 |
+
def predict_proba(self, images):
|
137 |
+
# Load images and extract features
|
138 |
+
features = self.extract_wavelet_features(images)
|
139 |
+
|
140 |
+
# Apply UMAP dimensionality reduction
|
141 |
+
embeddings = self.reducer.transform(features)
|
142 |
+
|
143 |
+
# Make predictions
|
144 |
+
return self.classifier.predict_proba(embeddings)
|
145 |
+
|
146 |
+
def score(self, test_folder):
|
147 |
+
# Load images and extract features
|
148 |
+
images, labels = self.load_images_from_folder(test_folder)
|
149 |
+
features = self.extract_wavelet_features(images)
|
150 |
+
|
151 |
+
# Apply UMAP dimensionality reduction
|
152 |
+
embeddings = self.reducer.transform(features)
|
153 |
+
|
154 |
+
# Evaluate the classifier
|
155 |
+
return self.classifier.score(embeddings, labels)
|
156 |
+
|
157 |
+
def cross_val_score(self, folder1, folder2, n_splits=5):
|
158 |
+
# Load images and extract features
|
159 |
+
# Load images and extract features
|
160 |
+
images1, labels1 = self.load_images_from_folder(folder1)
|
161 |
+
images2, labels2 = self.load_images_from_folder(folder2)
|
162 |
+
|
163 |
+
min_length = min(len(images1), len(images2))
|
164 |
+
images1 = images1[:min_length]
|
165 |
+
images2 = images2[:min_length]
|
166 |
+
labels1 = labels1[:min_length]
|
167 |
+
labels2 = labels2[:min_length]
|
168 |
+
|
169 |
+
images = images1 + images2
|
170 |
+
labels = labels1 + labels2
|
171 |
+
features = self.extract_wavelet_features(images)
|
172 |
+
|
173 |
+
# Apply UMAP dimensionality reduction
|
174 |
+
embeddings = self.reducer.fit_transform(features)
|
175 |
+
# Perform four-fold cross-validation
|
176 |
+
kfold = KFold(n_splits=n_splits, shuffle=True, random_state=42)
|
177 |
+
scores = cross_val_score(
|
178 |
+
self.classifier, embeddings, labels, cv=kfold, scoring="accuracy"
|
179 |
+
)
|
180 |
+
|
181 |
+
# Print the cross-validation scores
|
182 |
+
print("Cross-validation scores:", scores)
|
183 |
+
print("Average cross-validation score:", scores.mean())
|
184 |
+
|
185 |
+
def save_model(self, filename):
|
186 |
+
joblib.dump(self, filename, compress=("lzma", 9))
|
187 |
|
188 |
+
@staticmethod
|
189 |
+
def load_model(filename):
|
190 |
+
return joblib.load(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
model = WaveletClassifier.load_model("wavelet_classifier.pkl")
|
194 |
|
195 |
|
196 |
def classify_image(image):
|
197 |
+
image = Image.fromarray(image)
|
198 |
+
probabilities = model.predict_proba([image.resize((512, 512))])
|
199 |
# Convert to 2D array for model input
|
|
|
200 |
labels = ["Photo", "CGI"]
|
201 |
+
return {f"{labels[i]}": prob for i, prob in enumerate(probabilities[0])}
|
202 |
|
203 |
|
204 |
interface = gr.Interface(
|
wavelet_classifier.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db91c7f1d1841b5820ef7d9a043dfebf4ecf89568279fd1f79c490a13a206c0d
|
3 |
+
size 465142385
|