File size: 5,552 Bytes
2b5cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1dfd05
d61a02b
a1dfd05
3f0f70e
 
 
30b1b63
3f0f70e
 
 
30b1b63
e7ec23a
3f0f70e
 
 
e7ec23a
 
 
 
 
 
 
 
 
 
2b5cb3b
 
a1dfd05
 
2b5cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0f70e
2b5cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1dfd05
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import whisper
import os
from pytube import YouTube
import pandas as pd
import plotly_express as px
import nltk
import plotly.graph_objects as go
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import streamlit as st

nltk.download('punkt')

from nltk import sent_tokenize


st.set_page_config(
    page_title="Home",
    page_icon="πŸ“ž",
)

st.sidebar.header("Home")
st.markdown("## Earnings Call Analysis Whisperer")

st.markdown(
    """
    This app assists finance analysts with transcribing and analysis Earnings Calls by carrying out the following tasks:
    - Transcribing earnings calls using Open AI's [Whisper](https://github.com/openai/whisper).
    - Analysing the sentiment of transcribed text using the quantized version of [FinBert-Tone](https://huggingface.co/nickmuchi/quantized-optimum-finbert-tone).
    - Semantic search engine with [Sentence-Transformers](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) and reranking results with a Cross-Encoder.
    
    **πŸ‘‡ Enter a YouTube Earnings Call URL below and navigate to the sidebar tabs** 
    
"""
)

url_input = st.text_input(
        label='Enter YouTube URL, e.g "https://www.youtube.com/watch?v=8pmbScvyfeY"', key="url")
        
st.markdown(
    "<h3 style='text-align: center; color: red;'>OR</h3>",
    unsafe_allow_html=True
)

upload_wav = st.file_uploader("Upload a .wav sound file ",key="upload")

auth_token = os.environ.get("auth_token")

progress_bar = st.sidebar.progress(0)

@st.experimental_singleton()
def load_models():
    asr_model = whisper.load_model("small")
    q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
    q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
    cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
    
    return asr_model, q_model, q_tokenizer, cross_encoder
    
asr_model, q_model, q_tokenizer, cross_encoder = load_models()

@st.experimental_memo(suppress_st_warning=True)
def inference(link, upload):
    '''Convert Youtube video or Audio upload to text'''
    
    if validators.url(link):
    
      yt = YouTube(link)
      title = yt.title
      path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
      options = whisper.DecodingOptions(without_timestamps=True)
      results = asr_model.transcribe(path)
      
      return results, yt.title
      
    elif upload:
      results = asr_model.transcribe(upload)
      
      return results, "Transcribed Earnings Audio"
      
@st.experimental_memo(suppress_st_warning=True)
def sentiment_pipe(earnings_text):
    '''Determine the sentiment of the text'''
    
    remote_clx = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)

    earnings_sentiment = remote_clx(sent_tokenize(earnings_text))
    
    return earnings_sentiment    
    
@st.experimental_memo(suppress_st_warning=True)
def preprocess_plain_text(text,window_size=3):
    '''Preprocess text for semantic search'''
    
    text = text.encode("ascii", "ignore").decode()  # unicode
    text = re.sub(r"https*\S+", " ", text)  # url
    text = re.sub(r"@\S+", " ", text)  # mentions
    text = re.sub(r"#\S+", " ", text)  # hastags
    text = re.sub(r"\s{2,}", " ", text)  # over spaces
    #text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text)  # special characters except .,!?
    
    #break into lines and remove leading and trailing space on each
    lines = [line.strip() for line in text.splitlines()]
    
    # #break multi-headlines into a line each
    chunks = [phrase.strip() for line in lines for phrase in line.split("  ")]
    
    # # drop blank lines
    text = '\n'.join(chunk for chunk in chunks if chunk)
    
    ## We split this article into paragraphs and then every paragraph into sentences
    paragraphs = []
    for paragraph in text.replace('\n',' ').split("\n\n"):
        if len(paragraph.strip()) > 0:
            paragraphs.append(sent_tokenize(paragraph.strip()))

    #We combine up to 3 sentences into a passage. You can choose smaller or larger values for window_size
    #Smaller value: Context from other sentences might get lost
    #Lager values: More context from the paragraph remains, but results are longer
    window_size = window_size
    passages = []
    for paragraph in paragraphs:
        for start_idx in range(0, len(paragraph), window_size):
            end_idx = min(start_idx+window_size, len(paragraph))
            passages.append(" ".join(paragraph[start_idx:end_idx]))
        
    print(f"Sentences: {sum([len(p) for p in paragraphs])}")
    print(f"Passages: {len(passages)}")

    return passages
    
def display_df_as_table(model,top_k,score='score'):
    '''Display the df with text and scores as a table'''
    
    df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
    df['Score'] = round(df['Score'],2)
    
    return df   
    
def make_spans(text,results):
    results_list = []
    for i in range(len(results)):
        results_list.append(results[i]['label'])
    facts_spans = []
    facts_spans = list(zip(sent_tokenizer(text),results_list))
    return facts_spans

##Fiscal Sentiment by Sentence
def fin_ext(text):
    results = remote_clx(sent_tokenizer(text))
    return make_spans(text,results)

progress_bar.empty()