|
import whisper |
|
import os |
|
import random |
|
import openai |
|
import yt_dlp |
|
from pytube import YouTube, extract |
|
import pandas as pd |
|
import plotly_express as px |
|
import nltk |
|
import plotly.graph_objects as go |
|
from optimum.onnxruntime import ORTModelForSequenceClassification |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM, AutoModelForTokenClassification |
|
from sentence_transformers import SentenceTransformer, CrossEncoder, util |
|
import streamlit as st |
|
import en_core_web_lg |
|
import validators |
|
import re |
|
import itertools |
|
import numpy as np |
|
from bs4 import BeautifulSoup |
|
import base64, time |
|
from annotated_text import annotated_text |
|
import pickle, math |
|
import wikipedia |
|
from pyvis.network import Network |
|
import torch |
|
from pydub import AudioSegment |
|
from langchain.docstore.document import Document |
|
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInstructEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.chains import QAGenerationChain |
|
|
|
from langchain.callbacks import StreamlitCallbackHandler |
|
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor |
|
from langchain.agents.agent_toolkits import create_retriever_tool |
|
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import ( |
|
AgentTokenBufferMemory, |
|
) |
|
from langchain.prompts import MessagesPlaceholder |
|
|
|
from langchain.prompts.chat import ( |
|
ChatPromptTemplate, |
|
SystemMessagePromptTemplate, |
|
AIMessagePromptTemplate, |
|
HumanMessagePromptTemplate, |
|
) |
|
from langchain.schema import ( |
|
AIMessage, |
|
HumanMessage, |
|
SystemMessage |
|
) |
|
|
|
from langchain.prompts import PromptTemplate |
|
|
|
nltk.download('punkt') |
|
|
|
|
|
from nltk import sent_tokenize |
|
|
|
OPEN_AI_KEY = os.environ.get('OPEN_AI_KEY') |
|
time_str = time.strftime("%d%m%Y-%H%M%S") |
|
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; |
|
margin-bottom: 2.5rem">{}</div> """ |
|
|
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
def load_models(): |
|
|
|
'''Load and cache all the models to be used''' |
|
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone") |
|
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english") |
|
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone") |
|
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english") |
|
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer) |
|
sum_pipe = pipeline("summarization",model="philschmid/flan-t5-base-samsum",clean_up_tokenization_spaces=True) |
|
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) |
|
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') |
|
sbert = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
return sent_pipe, sum_pipe, ner_pipe, cross_encoder, sbert |
|
|
|
@st.cache_data |
|
def load_asr_model(model_name): |
|
|
|
'''Load the open source whisper model in cases where the API is not working''' |
|
model = whisper.load_model(model_name) |
|
|
|
return model |
|
|
|
@st.cache_resource |
|
def get_spacy(): |
|
nlp = en_core_web_lg.load() |
|
return nlp |
|
|
|
nlp = get_spacy() |
|
|
|
sent_pipe, sum_pipe, ner_pipe, cross_encoder, sbert = load_models() |
|
|
|
@st.cache_data |
|
def get_yt_audio(url): |
|
|
|
'''Get YT video from given URL link''' |
|
yt = YouTube(url) |
|
|
|
title = yt.title |
|
|
|
|
|
audio_stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() |
|
|
|
return audio_stream, title |
|
|
|
@st.cache_data |
|
def get_yt_audio_dl(url): |
|
|
|
'''Back up for when pytube is down''' |
|
|
|
temp_audio_file = os.path.join('output', 'audio') |
|
|
|
ydl_opts = { |
|
'format': 'bestaudio/best', |
|
'postprocessors': [{ |
|
'key': 'FFmpegExtractAudio', |
|
'preferredcodec': 'mp3', |
|
'preferredquality': '192', |
|
}], |
|
'outtmpl': temp_audio_file, |
|
'quiet': True, |
|
} |
|
|
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
|
|
info = ydl.extract_info(url, download=False) |
|
title = info.get('title', None) |
|
ydl.download([url]) |
|
|
|
|
|
audio_file = os.path.join('output', 'audio.mp3') |
|
|
|
return audio_file, title |
|
|
|
|
|
@st.cache_data |
|
def load_whisper_api(audio): |
|
|
|
'''Transcribe YT audio to text using Open AI API''' |
|
file = open(audio, "rb") |
|
transcript = openai.Audio.translate("whisper-1", file) |
|
|
|
return transcript |
|
|
|
@st.cache_data |
|
def transcribe_yt_video(link, py_tube=True): |
|
'''Transcribe YouTube video''' |
|
|
|
if py_tube: |
|
|
|
audio_file, title = get_yt_audio(link) |
|
|
|
print(f'audio_file:{audio_file}') |
|
|
|
st.session_state['audio'] = audio_file |
|
|
|
print(f"audio_file_session_state:{st.session_state['audio'] }") |
|
|
|
|
|
audio_size = round(os.path.getsize(st.session_state['audio'])/(1024*1024),1) |
|
|
|
|
|
if audio_size <= 25: |
|
|
|
st.info("`Transcribing YT audio...`") |
|
|
|
|
|
results = load_whisper_api(st.session_state['audio'])['text'] |
|
|
|
else: |
|
|
|
st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️") |
|
|
|
song = AudioSegment.from_file(st.session_state['audio'], format='mp4') |
|
|
|
|
|
twenty_minutes = 20 * 60 * 1000 |
|
|
|
chunks = song[::twenty_minutes] |
|
|
|
transcriptions = [] |
|
|
|
video_id = extract.video_id(link) |
|
|
|
for i, chunk in enumerate(chunks): |
|
chunk.export(f'output/chunk_{i}_{video_id}.mp4', format='mp4') |
|
transcriptions.append(load_whisper_api(f'output/chunk_{i}_{video_id}.mp4')['text']) |
|
|
|
results = ','.join(transcriptions) |
|
|
|
else: |
|
|
|
audio_file, title = get_yt_audio_dl(link) |
|
|
|
print(f'audio_file:{audio_file}') |
|
|
|
st.session_state['audio'] = audio_file |
|
|
|
print(f"audio_file_session_state:{st.session_state['audio'] }") |
|
|
|
|
|
audio_size = round(os.path.getsize(st.session_state['audio'])/(1024*1024),1) |
|
|
|
|
|
if audio_size <= 25: |
|
|
|
st.info("`Transcribing YT audio...`") |
|
|
|
|
|
results = load_whisper_api(st.session_state['audio'])['text'] |
|
|
|
else: |
|
|
|
st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️") |
|
|
|
song = AudioSegment.from_file(st.session_state['audio'], format='mp3') |
|
|
|
|
|
twenty_minutes = 20 * 60 * 1000 |
|
|
|
chunks = song[::twenty_minutes] |
|
|
|
transcriptions = [] |
|
|
|
video_id = extract.video_id(link) |
|
|
|
for i, chunk in enumerate(chunks): |
|
chunk.export(f'output/chunk_{i}_{video_id}.mp3', format='mp3') |
|
transcriptions.append(load_whisper_api(f'output/chunk_{i}_{video_id}.mp3')['text']) |
|
|
|
results = ','.join(transcriptions) |
|
|
|
|
|
st.info("`YT Video transcription process complete...`") |
|
|
|
return results, title |
|
|
|
@st.cache_data |
|
def inference(link, upload): |
|
'''Convert Youtube video or Audio upload to text''' |
|
|
|
try: |
|
|
|
if validators.url(link): |
|
|
|
st.info("`Downloading YT audio...`") |
|
|
|
results, title = transcribe_yt_video(link) |
|
|
|
return results, title |
|
|
|
elif _upload: |
|
|
|
|
|
audio_size = round(os.path.getsize(_upload)/(1024*1024),1) |
|
|
|
|
|
if audio_size <= 25: |
|
|
|
st.info("`Transcribing uploaded audio...`") |
|
|
|
|
|
results = load_whisper_api(_upload)['text'] |
|
|
|
else: |
|
|
|
st.write('File size larger than 24mb, applying chunking and transcription') |
|
|
|
song = AudioSegment.from_file(_upload) |
|
|
|
|
|
twenty_minutes = 20 * 60 * 1000 |
|
|
|
chunks = song[::twenty_minutes] |
|
|
|
transcriptions = [] |
|
|
|
st.info("`Transcribing uploaded audio...`") |
|
|
|
for i, chunk in enumerate(chunks): |
|
chunk.export(f'output/chunk_{i}.mp4', format='mp4') |
|
transcriptions.append(load_whisper_api(f'output/chunk_{i}.mp4')['text']) |
|
|
|
results = ','.join(transcriptions) |
|
|
|
st.info("`Uploaded audio transcription process complete...`") |
|
|
|
return results, "Transcribed Earnings Audio" |
|
|
|
except Exception as e: |
|
|
|
st.error(f'''PyTube Error: {e}, |
|
Using yt_dlp module, might take longer than expected''',icon="🚨") |
|
|
|
results, title = transcribe_yt_video(link, py_tube=False) |
|
|
|
|
|
|
|
return results, title |
|
|
|
@st.cache_data |
|
def clean_text(text): |
|
'''Clean all text after inference''' |
|
|
|
text = text.encode("ascii", "ignore").decode() |
|
text = re.sub(r"https*\S+", " ", text) |
|
text = re.sub(r"@\S+", " ", text) |
|
text = re.sub(r"#\S+", " ", text) |
|
text = re.sub(r"\s{2,}", " ", text) |
|
|
|
return text |
|
|
|
@st.cache_data |
|
def chunk_long_text(text,threshold,window_size=3,stride=2): |
|
'''Preprocess text and chunk for sentiment analysis''' |
|
|
|
|
|
sentences = sent_tokenize(text) |
|
out = [] |
|
|
|
|
|
for chunk in sentences: |
|
if len(chunk.split()) < threshold: |
|
out.append(chunk) |
|
else: |
|
words = chunk.split() |
|
num = int(len(words)/threshold) |
|
for i in range(0,num*threshold+1,threshold): |
|
out.append(' '.join(words[i:threshold+i])) |
|
|
|
passages = [] |
|
|
|
|
|
for paragraph in [out]: |
|
for start_idx in range(0, len(paragraph), stride): |
|
end_idx = min(start_idx+window_size, len(paragraph)) |
|
passages.append(" ".join(paragraph[start_idx:end_idx])) |
|
|
|
return passages |
|
|
|
@st.cache_data |
|
def sentiment_pipe(earnings_text): |
|
'''Determine the sentiment of the text''' |
|
|
|
earnings_sentences = chunk_long_text(earnings_text,150,1,1) |
|
earnings_sentiment = sent_pipe(earnings_sentences) |
|
|
|
return earnings_sentiment, earnings_sentences |
|
|
|
@st.cache_data |
|
def chunk_and_preprocess_text(text, model_name= 'philschmid/flan-t5-base-samsum'): |
|
|
|
'''Chunk and preprocess text for summarization''' |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
sentences = sent_tokenize(text) |
|
|
|
|
|
length = 0 |
|
chunk = "" |
|
chunks = [] |
|
count = -1 |
|
|
|
for sentence in sentences: |
|
count += 1 |
|
combined_length = len(tokenizer.tokenize(sentence)) + length |
|
|
|
if combined_length <= tokenizer.max_len_single_sentence: |
|
chunk += sentence + " " |
|
length = combined_length |
|
|
|
|
|
if count == len(sentences) - 1: |
|
chunks.append(chunk) |
|
|
|
else: |
|
chunks.append(chunk) |
|
|
|
length = 0 |
|
chunk = "" |
|
|
|
|
|
chunk += sentence + " " |
|
length = len(tokenizer.tokenize(sentence)) |
|
|
|
return chunks |
|
|
|
@st.cache_data |
|
def summarize_text(text_to_summarize,max_len,min_len): |
|
'''Summarize text with HF model''' |
|
|
|
summarized_text = sum_pipe(text_to_summarize, |
|
max_length=max_len, |
|
min_length=min_len, |
|
do_sample=False, |
|
early_stopping=True, |
|
num_beams=4) |
|
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text]) |
|
|
|
return summarized_text |
|
|
|
@st.cache_data |
|
def get_all_entities_per_sentence(text): |
|
doc = nlp(''.join(text)) |
|
|
|
sentences = list(doc.sents) |
|
|
|
entities_all_sentences = [] |
|
for sentence in sentences: |
|
entities_this_sentence = [] |
|
|
|
|
|
for entity in sentence.ents: |
|
entities_this_sentence.append(str(entity)) |
|
|
|
|
|
entities_xlm = [entity["word"] for entity in ner_pipe(str(sentence))] |
|
for entity in entities_xlm: |
|
entities_this_sentence.append(str(entity)) |
|
|
|
entities_all_sentences.append(entities_this_sentence) |
|
|
|
return entities_all_sentences |
|
|
|
@st.cache_data |
|
def get_all_entities(text): |
|
all_entities_per_sentence = get_all_entities_per_sentence(text) |
|
return list(itertools.chain.from_iterable(all_entities_per_sentence)) |
|
|
|
@st.cache_data |
|
def get_and_compare_entities(article_content,summary_output): |
|
|
|
all_entities_per_sentence = get_all_entities_per_sentence(article_content) |
|
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence)) |
|
|
|
all_entities_per_sentence = get_all_entities_per_sentence(summary_output) |
|
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence)) |
|
|
|
matched_entities = [] |
|
unmatched_entities = [] |
|
for entity in entities_summary: |
|
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article): |
|
matched_entities.append(entity) |
|
elif any( |
|
np.inner(sbert.encode(entity, show_progress_bar=False), |
|
sbert.encode(art_entity, show_progress_bar=False)) > 0.9 for |
|
art_entity in entities_article): |
|
matched_entities.append(entity) |
|
else: |
|
unmatched_entities.append(entity) |
|
|
|
matched_entities = list(dict.fromkeys(matched_entities)) |
|
unmatched_entities = list(dict.fromkeys(unmatched_entities)) |
|
|
|
matched_entities_to_remove = [] |
|
unmatched_entities_to_remove = [] |
|
|
|
for entity in matched_entities: |
|
for substring_entity in matched_entities: |
|
if entity != substring_entity and entity.lower() in substring_entity.lower(): |
|
matched_entities_to_remove.append(entity) |
|
|
|
for entity in unmatched_entities: |
|
for substring_entity in unmatched_entities: |
|
if entity != substring_entity and entity.lower() in substring_entity.lower(): |
|
unmatched_entities_to_remove.append(entity) |
|
|
|
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove)) |
|
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove)) |
|
|
|
for entity in matched_entities_to_remove: |
|
matched_entities.remove(entity) |
|
for entity in unmatched_entities_to_remove: |
|
unmatched_entities.remove(entity) |
|
|
|
return matched_entities, unmatched_entities |
|
|
|
@st.cache_data |
|
def highlight_entities(article_content,summary_output): |
|
|
|
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">" |
|
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">" |
|
markdown_end = "</mark>" |
|
|
|
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output) |
|
|
|
for entity in matched_entities: |
|
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output) |
|
|
|
for entity in unmatched_entities: |
|
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output) |
|
|
|
print("") |
|
print("") |
|
|
|
soup = BeautifulSoup(summary_output, features="html.parser") |
|
|
|
return HTML_WRAPPER.format(soup) |
|
|
|
def summary_downloader(raw_text): |
|
'''Download the summary generated''' |
|
|
|
b64 = base64.b64encode(raw_text.encode()).decode() |
|
new_filename = "new_text_file_{}_.txt".format(time_str) |
|
st.markdown("#### Download Summary as a File ###") |
|
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>' |
|
st.markdown(href,unsafe_allow_html=True) |
|
|
|
@st.cache_data |
|
def generate_eval(raw_text, N, chunk): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
update = st.empty() |
|
ques_update = st.empty() |
|
update.info("`Generating sample questions ...`") |
|
n = len(raw_text) |
|
starting_indices = [random.randint(0, n-chunk) for _ in range(N)] |
|
sub_sequences = [raw_text[i:i+chunk] for i in starting_indices] |
|
chain = QAGenerationChain.from_llm(ChatOpenAI(temperature=0)) |
|
eval_set = [] |
|
|
|
for i, b in enumerate(sub_sequences): |
|
try: |
|
qa = chain.run(b) |
|
eval_set.append(qa) |
|
ques_update.info(f"Creating Question: {i+1}") |
|
|
|
except Exception as e: |
|
print(e) |
|
st.warning(f'Error in generating Question: {i+1}...', icon="⚠️") |
|
continue |
|
|
|
eval_set_full = list(itertools.chain.from_iterable(eval_set)) |
|
|
|
update.empty() |
|
ques_update.empty() |
|
|
|
return eval_set_full |
|
|
|
@st.cache_resource |
|
def create_prompt_and_llm(): |
|
'''Create prompt''' |
|
|
|
llm = ChatOpenAI(temperature=0, streaming=True, model="gpt-4") |
|
|
|
message = SystemMessage( |
|
content=( |
|
"You are a helpful chatbot who is tasked with answering questions acuurately about earnings call transcript provided. " |
|
"Unless otherwise explicitly stated, it is probably fair to assume that questions are about the earnings call transcript. " |
|
"If there is any ambiguity, you probably assume they are about that." |
|
"Do not use any information not provided in the earnings context and remember you are a to speak like a finance expert." |
|
"If you don't know the answer, just say 'There is no relevant answer in the given earnings call transcript'" |
|
"don't try to make up an answer" |
|
) |
|
) |
|
|
|
prompt = OpenAIFunctionsAgent.create_prompt( |
|
system_message=message, |
|
extra_prompt_messages=[MessagesPlaceholder(variable_name="history")], |
|
) |
|
|
|
return prompt, llm |
|
|
|
@st.cache_resource |
|
def gen_embeddings(embedding_model): |
|
|
|
'''Generate embeddings for given model''' |
|
|
|
if 'hkunlp' in embedding_model: |
|
|
|
embeddings = HuggingFaceInstructEmbeddings(model_name=embedding_model, |
|
query_instruction='Represent the Financial question for retrieving supporting paragraphs: ', |
|
embed_instruction='Represent the Financial paragraph for retrieval: ') |
|
|
|
elif 'mpnet' in embedding_model: |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name=embedding_model) |
|
|
|
elif 'FlagEmbedding' in embedding_model: |
|
|
|
encode_kwargs = {'normalize_embeddings': True} |
|
embeddings = HuggingFaceBgeEmbeddings(model_name=embedding_model, |
|
encode_kwargs = encode_kwargs |
|
) |
|
|
|
return embeddings |
|
|
|
@st.cache_data |
|
def create_vectorstore(corpus, title, embedding_model, chunk_size=1000, overlap=50): |
|
|
|
'''Process text for Semantic Search''' |
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,chunk_overlap=overlap) |
|
|
|
texts = text_splitter.split_text(corpus) |
|
|
|
embeddings = gen_embeddings(embedding_model) |
|
|
|
vectorstore = FAISS.from_texts(texts, embeddings, metadatas=[{"source": i} for i in range(len(texts))]) |
|
|
|
return vectorstore |
|
|
|
@st.cache_data |
|
def create_memory_and_agent(query,_docsearch): |
|
|
|
'''Embed text and generate semantic search scores''' |
|
|
|
|
|
vectorstore = _docsearch.as_retriever(search_kwargs={"k": 4}) |
|
|
|
|
|
tool = create_retriever_tool( |
|
vectorstore, |
|
"earnings_call_search", |
|
"Searches and returns documents using the earnings context provided as a source, relevant to the user input question.", |
|
) |
|
|
|
tools = [tool] |
|
|
|
prompt,llm = create_prompt_and_llm() |
|
|
|
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt) |
|
|
|
agent_executor = AgentExecutor( |
|
agent=agent, |
|
tools=tools, |
|
verbose=True, |
|
return_intermediate_steps=True, |
|
) |
|
|
|
memory = AgentTokenBufferMemory(llm=llm) |
|
|
|
return memory, agent_executor |
|
|
|
@st.cache_data |
|
def gen_sentiment(text): |
|
'''Generate sentiment of given text''' |
|
return sent_pipe(text)[0]['label'] |
|
|
|
@st.cache_data |
|
def gen_annotated_text(df): |
|
'''Generate annotated text''' |
|
|
|
tag_list=[] |
|
for row in df.itertuples(): |
|
label = row[2] |
|
text = row[1] |
|
if label == 'Positive': |
|
tag_list.append((text,label,'#8fce00')) |
|
elif label == 'Negative': |
|
tag_list.append((text,label,'#f44336')) |
|
else: |
|
tag_list.append((text,label,'#000000')) |
|
|
|
return tag_list |
|
|
|
|
|
def display_df_as_table(model,top_k,score='score'): |
|
'''Display the df with text and scores as a table''' |
|
|
|
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text']) |
|
df['Score'] = round(df['Score'],2) |
|
|
|
return df |
|
|
|
|
|
def make_spans(text,results): |
|
results_list = [] |
|
for i in range(len(results)): |
|
results_list.append(results[i]['label']) |
|
facts_spans = [] |
|
facts_spans = list(zip(sent_tokenizer(text),results_list)) |
|
return facts_spans |
|
|
|
|
|
def fin_ext(text): |
|
results = remote_clx(sent_tokenizer(text)) |
|
return make_spans(text,results) |
|
|
|
|
|
|
|
def get_article(url): |
|
article = Article(url) |
|
article.download() |
|
article.parse() |
|
return article |
|
|
|
|