Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassifica
|
|
10 |
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
11 |
import streamlit as st
|
12 |
import en_core_web_lg
|
|
|
13 |
|
14 |
nltk.download('punkt')
|
15 |
|
@@ -50,259 +51,8 @@ upload_wav = st.file_uploader("Upload a .wav sound file ",key="upload")
|
|
50 |
auth_token = os.environ.get("auth_token")
|
51 |
|
52 |
progress_bar = st.sidebar.progress(0)
|
53 |
-
|
54 |
-
@st.experimental_singleton(suppress_st_warning=True)
|
55 |
-
def load_models():
|
56 |
-
asr_model = whisper.load_model("small")
|
57 |
-
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
58 |
-
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
59 |
-
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
60 |
-
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
61 |
-
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
62 |
-
sum_pipe = pipeline("summarization",model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn")
|
63 |
-
ner_pip = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
64 |
-
sbert = SentenceTransformer("all-mpnet-base-v2")
|
65 |
-
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
66 |
-
|
67 |
-
return asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder
|
68 |
-
|
69 |
-
@st.experimental_singleton(suppress_st_warning=True)
|
70 |
-
def get_spacy():
|
71 |
-
nlp = en_core_web_lg.load()
|
72 |
-
return nlp
|
73 |
|
74 |
nlp = get_spacy()
|
75 |
asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder = load_models()
|
76 |
|
77 |
-
@st.experimental_memo(suppress_st_warning=True)
|
78 |
-
def inference(link, upload):
|
79 |
-
'''Convert Youtube video or Audio upload to text'''
|
80 |
-
|
81 |
-
if validators.url(link):
|
82 |
-
|
83 |
-
yt = YouTube(link)
|
84 |
-
title = yt.title
|
85 |
-
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
|
86 |
-
options = whisper.DecodingOptions(without_timestamps=True)
|
87 |
-
results = asr_model.transcribe(path)
|
88 |
-
|
89 |
-
return results, yt.title
|
90 |
-
|
91 |
-
elif upload:
|
92 |
-
results = asr_model.transcribe(upload)
|
93 |
-
|
94 |
-
return results, "Transcribed Earnings Audio"
|
95 |
-
|
96 |
-
@st.experimental_memo(suppress_st_warning=True)
|
97 |
-
def sentiment_pipe(earnings_text):
|
98 |
-
'''Determine the sentiment of the text'''
|
99 |
-
|
100 |
-
earnings_sentences = sent_tokenize(earnings_text)
|
101 |
-
earnings_sentiment = sent_pipe(earnings_sentences)
|
102 |
-
|
103 |
-
return earnings_sentiment, earnings_sentences
|
104 |
-
|
105 |
-
@st.experimental_memo(suppress_st_warning=True)
|
106 |
-
def preprocess_plain_text(text,window_size=3):
|
107 |
-
'''Preprocess text for semantic search'''
|
108 |
-
|
109 |
-
text = text.encode("ascii", "ignore").decode() # unicode
|
110 |
-
text = re.sub(r"https*\S+", " ", text) # url
|
111 |
-
text = re.sub(r"@\S+", " ", text) # mentions
|
112 |
-
text = re.sub(r"#\S+", " ", text) # hastags
|
113 |
-
text = re.sub(r"\s{2,}", " ", text) # over spaces
|
114 |
-
#text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!?
|
115 |
-
|
116 |
-
#break into lines and remove leading and trailing space on each
|
117 |
-
lines = [line.strip() for line in text.splitlines()]
|
118 |
-
|
119 |
-
# #break multi-headlines into a line each
|
120 |
-
chunks = [phrase.strip() for line in lines for phrase in line.split(" ")]
|
121 |
-
|
122 |
-
# # drop blank lines
|
123 |
-
text = '\n'.join(chunk for chunk in chunks if chunk)
|
124 |
-
|
125 |
-
## We split this article into paragraphs and then every paragraph into sentences
|
126 |
-
paragraphs = []
|
127 |
-
for paragraph in text.replace('\n',' ').split("\n\n"):
|
128 |
-
if len(paragraph.strip()) > 0:
|
129 |
-
paragraphs.append(sent_tokenize(paragraph.strip()))
|
130 |
-
|
131 |
-
#We combine up to 3 sentences into a passage. You can choose smaller or larger values for window_size
|
132 |
-
#Smaller value: Context from other sentences might get lost
|
133 |
-
#Lager values: More context from the paragraph remains, but results are longer
|
134 |
-
window_size = window_size
|
135 |
-
passages = []
|
136 |
-
for paragraph in paragraphs:
|
137 |
-
for start_idx in range(0, len(paragraph), window_size):
|
138 |
-
end_idx = min(start_idx+window_size, len(paragraph))
|
139 |
-
passages.append(" ".join(paragraph[start_idx:end_idx]))
|
140 |
-
|
141 |
-
print(f"Sentences: {sum([len(p) for p in paragraphs])}")
|
142 |
-
print(f"Passages: {len(passages)}")
|
143 |
-
|
144 |
-
return passages
|
145 |
-
|
146 |
-
@st.experimental_memo(suppress_st_warning=True)
|
147 |
-
def chunk_clean_text(text):
|
148 |
-
|
149 |
-
"""Chunk text longer than 500 tokens"""
|
150 |
-
|
151 |
-
article = nlp(text)
|
152 |
-
sentences = [i.text for i in list(article.sents)]
|
153 |
-
|
154 |
-
current_chunk = 0
|
155 |
-
chunks = []
|
156 |
-
|
157 |
-
for sentence in sentences:
|
158 |
-
if len(chunks) == current_chunk + 1:
|
159 |
-
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
|
160 |
-
chunks[current_chunk].extend(sentence.split(" "))
|
161 |
-
else:
|
162 |
-
current_chunk += 1
|
163 |
-
chunks.append(sentence.split(" "))
|
164 |
-
else:
|
165 |
-
chunks.append(sentence.split(" "))
|
166 |
-
|
167 |
-
for chunk_id in range(len(chunks)):
|
168 |
-
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
169 |
-
|
170 |
-
return chunks
|
171 |
-
|
172 |
-
def summary_downloader(raw_text):
|
173 |
-
|
174 |
-
b64 = base64.b64encode(raw_text.encode()).decode()
|
175 |
-
new_filename = "new_text_file_{}_.txt".format(time_str)
|
176 |
-
st.markdown("#### Download Summary as a File ###")
|
177 |
-
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
|
178 |
-
st.markdown(href,unsafe_allow_html=True)
|
179 |
-
|
180 |
-
def get_all_entities_per_sentence(text):
|
181 |
-
doc = nlp(''.join(text))
|
182 |
-
|
183 |
-
sentences = list(doc.sents)
|
184 |
-
|
185 |
-
entities_all_sentences = []
|
186 |
-
for sentence in sentences:
|
187 |
-
entities_this_sentence = []
|
188 |
-
|
189 |
-
# SPACY ENTITIES
|
190 |
-
for entity in sentence.ents:
|
191 |
-
entities_this_sentence.append(str(entity))
|
192 |
-
|
193 |
-
# FLAIR ENTITIES (CURRENTLY NOT USED)
|
194 |
-
# sentence_entities = Sentence(str(sentence))
|
195 |
-
# tagger.predict(sentence_entities)
|
196 |
-
# for entity in sentence_entities.get_spans('ner'):
|
197 |
-
# entities_this_sentence.append(entity.text)
|
198 |
-
|
199 |
-
# XLM ENTITIES
|
200 |
-
entities_xlm = [entity["word"] for entity in ner_model(str(sentence))]
|
201 |
-
for entity in entities_xlm:
|
202 |
-
entities_this_sentence.append(str(entity))
|
203 |
-
|
204 |
-
entities_all_sentences.append(entities_this_sentence)
|
205 |
-
|
206 |
-
return entities_all_sentences
|
207 |
-
|
208 |
-
def get_all_entities(text):
|
209 |
-
all_entities_per_sentence = get_all_entities_per_sentence(text)
|
210 |
-
return list(itertools.chain.from_iterable(all_entities_per_sentence))
|
211 |
-
|
212 |
-
def get_and_compare_entities(article_content,summary_output):
|
213 |
-
|
214 |
-
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
|
215 |
-
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
|
216 |
-
|
217 |
-
all_entities_per_sentence = get_all_entities_per_sentence(summary_output)
|
218 |
-
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
|
219 |
-
|
220 |
-
matched_entities = []
|
221 |
-
unmatched_entities = []
|
222 |
-
for entity in entities_summary:
|
223 |
-
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
|
224 |
-
matched_entities.append(entity)
|
225 |
-
elif any(
|
226 |
-
np.inner(sentence_embedding_model.encode(entity, show_progress_bar=False),
|
227 |
-
sentence_embedding_model.encode(art_entity, show_progress_bar=False)) > 0.9 for
|
228 |
-
art_entity in entities_article):
|
229 |
-
matched_entities.append(entity)
|
230 |
-
else:
|
231 |
-
unmatched_entities.append(entity)
|
232 |
-
|
233 |
-
matched_entities = list(dict.fromkeys(matched_entities))
|
234 |
-
unmatched_entities = list(dict.fromkeys(unmatched_entities))
|
235 |
-
|
236 |
-
matched_entities_to_remove = []
|
237 |
-
unmatched_entities_to_remove = []
|
238 |
-
|
239 |
-
for entity in matched_entities:
|
240 |
-
for substring_entity in matched_entities:
|
241 |
-
if entity != substring_entity and entity.lower() in substring_entity.lower():
|
242 |
-
matched_entities_to_remove.append(entity)
|
243 |
-
|
244 |
-
for entity in unmatched_entities:
|
245 |
-
for substring_entity in unmatched_entities:
|
246 |
-
if entity != substring_entity and entity.lower() in substring_entity.lower():
|
247 |
-
unmatched_entities_to_remove.append(entity)
|
248 |
-
|
249 |
-
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove))
|
250 |
-
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove))
|
251 |
-
|
252 |
-
for entity in matched_entities_to_remove:
|
253 |
-
matched_entities.remove(entity)
|
254 |
-
for entity in unmatched_entities_to_remove:
|
255 |
-
unmatched_entities.remove(entity)
|
256 |
-
|
257 |
-
return matched_entities, unmatched_entities
|
258 |
-
|
259 |
-
def highlight_entities(article_content,summary_output):
|
260 |
-
|
261 |
-
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
|
262 |
-
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
|
263 |
-
markdown_end = "</mark>"
|
264 |
-
|
265 |
-
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output)
|
266 |
-
|
267 |
-
print(summary_output)
|
268 |
-
|
269 |
-
for entity in matched_entities:
|
270 |
-
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output)
|
271 |
-
|
272 |
-
for entity in unmatched_entities:
|
273 |
-
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output)
|
274 |
-
|
275 |
-
print("")
|
276 |
-
print(summary_output)
|
277 |
-
|
278 |
-
print("")
|
279 |
-
print(summary_output)
|
280 |
-
|
281 |
-
soup = BeautifulSoup(summary_output, features="html.parser")
|
282 |
-
|
283 |
-
return HTML_WRAPPER.format(soup)
|
284 |
-
|
285 |
-
nlp = get_spacy()
|
286 |
-
|
287 |
-
def display_df_as_table(model,top_k,score='score'):
|
288 |
-
'''Display the df with text and scores as a table'''
|
289 |
-
|
290 |
-
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
|
291 |
-
df['Score'] = round(df['Score'],2)
|
292 |
-
|
293 |
-
return df
|
294 |
-
|
295 |
-
def make_spans(text,results):
|
296 |
-
results_list = []
|
297 |
-
for i in range(len(results)):
|
298 |
-
results_list.append(results[i]['label'])
|
299 |
-
facts_spans = []
|
300 |
-
facts_spans = list(zip(sent_tokenizer(text),results_list))
|
301 |
-
return facts_spans
|
302 |
-
|
303 |
-
##Fiscal Sentiment by Sentence
|
304 |
-
def fin_ext(text):
|
305 |
-
results = remote_clx(sent_tokenizer(text))
|
306 |
-
return make_spans(text,results)
|
307 |
-
|
308 |
progress_bar.empty()
|
|
|
10 |
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
11 |
import streamlit as st
|
12 |
import en_core_web_lg
|
13 |
+
from funtions import *
|
14 |
|
15 |
nltk.download('punkt')
|
16 |
|
|
|
51 |
auth_token = os.environ.get("auth_token")
|
52 |
|
53 |
progress_bar = st.sidebar.progress(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
nlp = get_spacy()
|
56 |
asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder = load_models()
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
progress_bar.empty()
|