import streamlit as st from functions import * st.set_page_config(page_title="Earnings Semantic Search", page_icon="🔎") st.sidebar.header("Semantic Search") st.markdown("## Earnings Semantic Search with SBert") def gen_sentiment(text): '''Generate sentiment of given text''' return sent_pipe(text)[0]['label'] bi_enc_options = ["all-mpnet-base-v2","multi-qa-mpnet-base-dot-v1","intfloat/e5-base","all-MiniLM-L12-v2"] search_input = st.text_input( label='Enter Your Search Query',value= "What key challenges did the business face?", key='search') sbert_model_name = st.sidebar.selectbox("Embedding Model", options=bi_enc_options, key='sbox') top_k = 2 window_size = st.sidebar.slider("Number of Sentences Generated in Search Response",min_value=1,max_value=7,value=3) try: if search_input: if "sen_df" in st.session_state and "earnings_passages" in st.session_state: ## Save to a dataframe for ease of visualization sen_df = st.session_state['sen_df'] passages = chunk_long_text(st.session_state['earnings_passages'],150,window_size=window_size) with st.spinner( text=f"Loading {sbert_model_name} encoder..." ): sbert = load_sbert(sbert_model_name) ##### Sematic Search ##### # Encode the query using the bi-encoder and find potentially relevant passages corpus_embeddings = sbert.encode(passages, convert_to_tensor=True, show_progress_bar=True) question_embedding = sbert.encode(search_input, convert_to_tensor=True) question_embedding = question_embedding.cpu() hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query ##### Re-Ranking ##### # Now, score all retrieved passages with the cross_encoder cross_inp = [[search_input, passages[hit['corpus_id']]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] # Output of top-3 hits from re-ranker hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) score='cross-score' df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in hits[0:int(top_k)]],columns=['Score','Text']) df['Score'] = round(df['Score'],2) df['Sentiment'] = df.Text.apply(gen_sentiment) def gen_annotated_text(df): '''Generate annotated text''' tag_list=[] for row in df.itertuples(): label = row[3] text = row[2] if label == 'Positive': tag_list.append((text,label,'#8fce00')) elif label == 'Negative': tag_list.append((text,label,'#f44336')) else: tag_list.append((text,label,'#000000')) return tag_list text_annotations = gen_annotated_text(df) first, second = text_annotations[0], text_annotations[1] with st.expander(label='Best Search Query Result', expanded=True): annotated_text(first) with st.expander(label='Alternative Search Query Result'): annotated_text(second) else: st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file') else: st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file') except RuntimeError: st.write('Please ensure you have entered the YouTube URL or uploaded the Earnings Call file')