File size: 7,139 Bytes
5340689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7767fc8
 
5340689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f9838
5340689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfedde4
 
5340689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfedde4
5340689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f9838
5340689
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, YolosForObjectDetection
import os

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

# colors for visualization
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933]
]

def make_prediction(img, feature_extractor, model):
    inputs = feature_extractor(img, return_tensors="pt")
    outputs = model(**inputs)
    img_size = torch.tensor([tuple(reversed(img.size))])
    processed_outputs = feature_extractor.post_process(outputs, img_size)
    return processed_outputs[0]

def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    pil_img = Image.open(buf)
    basewidth = 750
    wpercent = (basewidth/float(pil_img.size[0]))
    hsize = int((float(pil_img.size[1])*float(wpercent)))
    img = pil_img.resize((basewidth,hsize), Image.Resampling.LANCZOS) 
    return img


def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    plt.figure(figsize=(50, 50))
    plt.imshow(img)
    ax = plt.gca()
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=5))
        ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=18, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())
    
def get_original_image(url_input):
    if validators.url(url_input):
        image = Image.open(requests.get(url_input, stream=True).raw)
        
        return image

def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
    
    #Extract model and feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
    
    model = YolosForObjectDetection.from_pretrained(model_name)
    
    
    if validators.url(url_input):
        image = get_original_image(url_input)
         
    elif image_input:
        image = image_input
        
    elif webcam_input:
        image = webcam_input
    
    #Make prediction
    processed_outputs = make_prediction(image, feature_extractor, model)
    
    #Visualize prediction
    viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
    
    return viz_img
        
def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])

def set_example_url(example: list) -> dict:
    return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))


title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""

description = """
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS). 
This model was further fine-tuned on the [Car license plate dataset]("https://www.kaggle.com/datasets/andrewmvd/car-plate-detection") from Kaggle. The dataset consists of 443 images of vehicle with annotations categorised as "Vehicle" and "Rego Plates". The model was trained for 200 epochs on a single GPU.
Links to HuggingFace Models:
- [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection)
- [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small)  
"""

models = ["nickmuchi/yolos-small-rego-plates-detection"]
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ","https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]

twitter_link = """
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
"""

css = '''
h1#title {
  text-align: center;
}
'''
demo = gr.Blocks(css=css)

with demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown(twitter_link)
    options = gr.Dropdown(choices=models,label='Object Detection Model',show_label=True)
    slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold')
    
    with gr.Tabs():
        with gr.TabItem('Image URL'):
            with gr.Row():
                with gr.Column():
                    url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
                    original_image = gr.Image(shape=(750,750))
                with gr.Column():
                    img_output_from_url = gr.Image(shape=(750,750))
                
            with gr.Row():
                example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
            
            url_but = gr.Button('Detect')
     
        with gr.TabItem('Image Upload'):
            with gr.Row():
                img_input = gr.Image(type='pil',shape=(750,750))
                img_output_from_upload= gr.Image(shape=(750,750))
                
            with gr.Row(): 
                example_images = gr.Dataset(components=[img_input],
                                            samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))])
                                                   
                
            img_but = gr.Button('Detect')
            
        with gr.TabItem('WebCam'):
            with gr.Row():
                web_input = gr.Image(source='webcam',type='pil',shape=(750,750),streaming=True)
                img_output_from_webcam= gr.Image(shape=(750,750))

            cam_but = gr.Button('Detect')
            
    url_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_url],queue=True)
    img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload],queue=True)
    cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam],queue=True)
    example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
    example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input,original_image])
    

    gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-license-plate-detection-with-yolos)")

    
demo.launch(debug=True,enable_queue=True)