File size: 7,139 Bytes
5340689 7767fc8 5340689 16f9838 5340689 dfedde4 5340689 dfedde4 5340689 16f9838 5340689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, YolosForObjectDetection
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs[0]
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
pil_img = Image.open(buf)
basewidth = 750
wpercent = (basewidth/float(pil_img.size[0]))
hsize = int((float(pil_img.size[1])*float(wpercent)))
img = pil_img.resize((basewidth,hsize), Image.Resampling.LANCZOS)
return img
def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
plt.figure(figsize=(50, 50))
plt.imshow(img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=5))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=18, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def get_original_image(url_input):
if validators.url(url_input):
image = Image.open(requests.get(url_input, stream=True).raw)
return image
def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = YolosForObjectDetection.from_pretrained(model_name)
if validators.url(url_input):
image = get_original_image(url_input)
elif image_input:
image = image_input
elif webcam_input:
image = webcam_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
return viz_img
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_url(example: list) -> dict:
return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
description = """
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
This model was further fine-tuned on the [Car license plate dataset]("https://www.kaggle.com/datasets/andrewmvd/car-plate-detection") from Kaggle. The dataset consists of 443 images of vehicle with annotations categorised as "Vehicle" and "Rego Plates". The model was trained for 200 epochs on a single GPU.
Links to HuggingFace Models:
- [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection)
- [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small)
"""
models = ["nickmuchi/yolos-small-rego-plates-detection"]
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ","https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
twitter_link = """
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
"""
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(twitter_link)
options = gr.Dropdown(choices=models,label='Object Detection Model',show_label=True)
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image URL'):
with gr.Row():
with gr.Column():
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
original_image = gr.Image(shape=(750,750))
with gr.Column():
img_output_from_url = gr.Image(shape=(750,750))
with gr.Row():
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
url_but = gr.Button('Detect')
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil',shape=(750,750))
img_output_from_upload= gr.Image(shape=(750,750))
with gr.Row():
example_images = gr.Dataset(components=[img_input],
samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))])
img_but = gr.Button('Detect')
with gr.TabItem('WebCam'):
with gr.Row():
web_input = gr.Image(source='webcam',type='pil',shape=(750,750),streaming=True)
img_output_from_webcam= gr.Image(shape=(750,750))
cam_but = gr.Button('Detect')
url_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_url],queue=True)
img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload],queue=True)
cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam],queue=True)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input,original_image])
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-license-plate-detection-with-yolos)")
demo.launch(debug=True,enable_queue=True) |