import argparse | |
import pandas as pd | |
import bananompy | |
from tqdm import tqdm | |
tqdm.pandas() | |
def getFirstFamilyName(s): | |
firstFamilyName = None | |
parsed = bananompy.parse(s) | |
try: | |
firstFamilyName = parsed[0]['parsed'][0]['family'] | |
except: | |
pass | |
return firstFamilyName | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument("inputfile") | |
parser.add_argument("outputfile") | |
args = parser.parse_args() | |
df = pd.read_csv(args.inputfile, | |
encoding='utf8', | |
keep_default_na=False, | |
na_values=['NONE',''], | |
on_bad_lines='skip', | |
sep=',') | |
# Extract unique recordedBy values | |
df_rb = df[['recordedBy']].drop_duplicates() | |
df_rb['recordedBy_first_familyname'] = df_rb.recordedBy.progress_apply(getFirstFamilyName) | |
# Apply back to main dataframe | |
df = pd.merge(left = df, right=df_rb, left_on='recordedBy', right_on='recordedBy', how='left') | |
# Add column holding collector name and number | |
mask = (df.recordNumber.notnull()) | |
df.loc[mask,'collectorNameAndNumber']=df[mask].apply(lambda row: '{} {}'.format(row['recordedBy_first_familyname'],row['recordNumber']),axis=1) | |
df.to_csv(args.outputfile, index=False, sep=',') |