Spaces:
Running
Running
File size: 25,752 Bytes
c4c7cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 |
import numpy as np
import pandas as pd
import torch
import random
import pickle
from os.path import join
from os.path import isfile
from PIL import Image
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
from torchvision.transforms import (
Compose,
RandomCrop,
CenterCrop,
RandomHorizontalFlip,
ToTensor,
)
import time
from torchvision.transforms import GaussianBlur
from torchvision import transforms
from pathlib import Path
import json
from tqdm import tqdm
import multiprocessing as mp
import ctypes
def normalize(lat, lon):
"""Used to put all lat lon inside ±90 and ±180."""
lat = (lat + 90) % 360 - 90
if lat > 90:
lat = 180 - lat
lon += 180
lon = (lon + 180) % 360 - 180
return lat, lon
def collate_fn(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
"text",
]:
if key in keys:
idx = [x[key] for x in batch]
output[key] = idx
keys.remove(key)
if "img" in keys and isinstance(batch[0]["img"], Image.Image):
output["img"] = [x["img"] for x in batch]
keys.remove("img")
for key in keys:
if not ("text" in key):
output[key] = torch.stack([x[key] for x in batch])
return output
def collate_fn_streetclip(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
"img",
"text",
]:
if key in keys:
idx = [x[key] for x in batch]
output[key] = idx
keys.remove(key)
for key in keys:
if not ("text" in key):
output[key] = torch.stack([x[key] for x in batch])
return output
def collate_fn_denstity(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
# Sample indices based on the weights
weights = np.array([x["weight"] for x in batch])
normalized_weights = weights / np.sum(weights)
sampled_indices = np.random.choice(
len(batch), size=len(batch), p=normalized_weights, replace=True
)
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
"text",
]:
if key in keys:
idx = [batch[i][key] for i in sampled_indices]
output[key] = idx
keys.remove(key)
for key in keys:
if not ("text" in key):
output[key] = torch.stack([batch[i][key] for i in sampled_indices])
return output
def collate_fn_streetclip_denstity(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
# Sample indices based on the weights
weights = np.array([x["weight"] for x in batch])
normalized_weights = weights / np.sum(weights)
sampled_indices = np.random.choice(
len(batch), size=len(batch), p=normalized_weights, replace=True
)
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
"img",
"text",
]:
if key in keys:
idx = [batch[i][key] for i in sampled_indices]
output[key] = idx
keys.remove(key)
for key in keys:
if not ("text" in key):
output[key] = torch.stack([batch[i][key] for i in sampled_indices])
return output
def collate_fn_contrastive(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
output = collate_fn(batch)
pos_img = torch.stack([x["pos_img"] for x in batch])
output["pos_img"] = pos_img
return output
def collate_fn_contrastive_density(batch):
"""Collate function for the dataloader.
Args:
batch (list): list of dictionaries with keys "img", "gps", "idx" and optionally "label"
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
keys = list(batch[0].keys())
if "weight" in batch[0].keys():
keys.remove("weight")
# Sample indices based on the weights
weights = np.array([x["weight"] for x in batch])
normalized_weights = weights / np.sum(weights)
sampled_indices = np.random.choice(
len(batch), size=len(batch), p=normalized_weights, replace=True
)
output = {}
for key in [
"idx",
"unique_country",
"unique_region",
"unique_sub-region",
"unique_city",
"img_idx",
]:
if key in keys:
idx = [batch[i][key] for i in sampled_indices]
output[key] = idx
keys.remove(key)
for key in keys:
if not ("text" in key):
output[key] = torch.stack([batch[i][key] for i in sampled_indices])
return output
class iNaturalist(Dataset):
def __init__(
self,
path,
transforms,
split="train",
output_type="image",
embedding_name="dinov2",
):
super().__init__()
self.split = split
with open(Path(path) / f"{split}.json", "r") as f:
self.metadata = json.load(f)
self.metadata = [
datapoint
for datapoint in self.metadata["images"]
if "latitude" in datapoint and datapoint["latitude"] is not None
]
self.path = path
self.transforms = transforms
self.output_type = output_type
self.embedding_name = embedding_name
self.collate_fn = collate_fn
def __getitem__(self, i):
output = {}
if "image" in self.output_type:
image_path = Path(self.path) / "images" / self.metadata[i]["file_name"]
img = self.transforms(Image.open(image_path))
output["img"] = img
if "emb" in self.output_type:
emb_path = (
Path(self.path)
/ "embeddings"
/ self.embedding_name
/ self.metadata[i]["file_name"].replace(".jpg", ".npy")
)
output["emb"] = torch.tensor(np.load(emb_path))
lat, lon = normalize(
self.metadata[i]["latitude"], self.metadata[i]["longitude"]
)
output["gps"] = torch.tensor(
[np.radians(lat), np.radians(lon)], dtype=torch.float
)
output["idx"] = i
output["img_idx"] = self.metadata[i]["id"]
return output
def __len__(self):
return len(self.metadata)
class OSV5M(Dataset):
csv_dtype = {"category": str, "country": str, "city": str} # Don't remove.
def __init__(
self,
path,
transforms,
split="train",
class_name=None,
aux_data=[],
is_baseline=False,
areas=["country", "region", "sub-region", "city"],
streetclip=False,
suff="",
blur=False,
output_type="image",
embedding_name="dinov2",
):
"""Initializes the dataset.
Args:
path (str): path to the dataset
transforms (torchvision.transforms): transforms to apply to the images
split (str): split to use (train, val, test)
class_name (str): category to use (e.g. "city")
aux_data (list of str): auxilliary datas to use
areas (list of str): regions to perform accuracy
streetclip (bool): if the model is streetclip, do not use transform
suff (str): suffix of test csv
blur (bool): blur bottom of images or not
output_type (str): type of output (image or emb)
"""
self.suff = suff
self.path = path
self.aux = len(aux_data) > 0
self.aux_list = aux_data
self.split = split
if split == "select":
self.df = self.load_split(split)
split = "test"
else:
self.df = self.load_split(split)
self.split = split
if "image" in output_type:
self.image_data_folder = join(
path,
"images",
("train" if split == "val" else split),
)
self.image_dict_names = {}
for root, _, files in os.walk(self.image_data_folder):
for file in files:
self.image_dict_names[file] = os.path.join(root, file)
if "emb" in output_type:
self.emb_data_folder = join(
path,
"embeddings",
embedding_name,
("train" if split == "val" else split),
)
self.emb_dict_names = {}
for root, _, files in os.walk(self.emb_data_folder):
for file in files:
self.emb_dict_names[file] = os.path.join(root, file)
self.output_type = output_type
self.is_baseline = is_baseline
if self.aux:
self.aux_data = {}
for col in self.aux_list:
if col in ["land_cover", "climate", "soil"]:
self.aux_data[col] = pd.get_dummies(self.df[col], dtype=float)
if col == "climate":
for i in range(31):
if not (i in list(self.aux_data[col].columns)):
self.aux_data[col][i] = 0
desired_order = [i for i in range(31)]
desired_order.remove(20)
self.aux_data[col] = self.aux_data[col][desired_order]
else:
self.aux_data[col] = self.df[col].apply(lambda x: [x])
self.areas = ["_".join(["unique", area]) for area in areas]
if class_name is None:
self.class_name = class_name
elif "quadtree" in class_name:
self.class_name = class_name
else:
self.class_name = "_".join(["unique", class_name])
ex = self.extract_classes(self.class_name)
self.df = self.df[
["id", "latitude", "longitude", "weight"] + self.areas + ex
].fillna("NaN")
if self.class_name in self.areas:
self.df.columns = list(self.df.columns)[:-1] + [self.class_name + "_2"]
self.transforms = transforms
self.collate_fn = collate_fn
self.collate_fn_density = collate_fn_denstity
self.blur = blur
self.streetclip = streetclip
if self.streetclip:
self.collate_fn = collate_fn_streetclip
self.collate_fn_density = collate_fn_streetclip_denstity
def load_split(self, split):
"""Returns a new dataset with the given split."""
start_time = time.time()
if split == "test":
df = pd.read_csv(join(self.path, "test.csv"), dtype=self.csv_dtype)
# extract coord
longitude = df["longitude"].values
latitude = df["latitude"].values
# Create bins
num_bins = 100
lon_bins = np.linspace(longitude.min(), longitude.max(), num_bins)
lat_bins = np.linspace(latitude.min(), latitude.max(), num_bins)
# compute density and weights
hist, _, _ = np.histogram2d(longitude, latitude, bins=[lon_bins, lat_bins])
weights = 1.0 / np.power(hist[df["lon_bin"], df["lat_bin"]], 0.75)
normalized_weights = weights / np.sum(weights)
df["weight"] = normalized_weights
return df
elif split == "select":
df = pd.read_csv(join(self.path, "select.csv"), dtype=self.csv_dtype)
# extract coord
longitude = df["longitude"].values
latitude = df["latitude"].values
# Create bins
num_bins = 100
lon_bins = np.linspace(longitude.min(), longitude.max(), num_bins)
lat_bins = np.linspace(latitude.min(), latitude.max(), num_bins)
# compute density and weights
hist, _, _ = np.histogram2d(longitude, latitude, bins=[lon_bins, lat_bins])
weights = 1.0 / np.power(hist[df["lon_bin"], df["lat_bin"]], 0.75)
normalized_weights = weights / np.sum(weights)
df["weight"] = normalized_weights
return df
else:
if len(self.suff) == 0:
df = pd.read_csv(join(self.path, "train.csv"), dtype=self.csv_dtype)
else:
df = pd.read_csv(
join(self.path, "train" + "_" + self.suff + ".csv"),
dtype=self.csv_dtype,
)
# extract coord
longitude = df["longitude"].values
latitude = df["latitude"].values
# Create bins
num_bins = 100
lon_bins = np.linspace(longitude.min(), longitude.max(), num_bins)
lat_bins = np.linspace(latitude.min(), latitude.max(), num_bins)
# compute density and weights
hist, _, _ = np.histogram2d(longitude, latitude, bins=[lon_bins, lat_bins])
weights = 1.0 / np.power(hist[df["lon_bin"], df["lat_bin"]], 0.75)
normalized_weights = weights / np.sum(weights)
df["weight"] = normalized_weights
test_df = df.sample(
n=int(0.1 * len(df)),
weights=normalized_weights,
replace=False,
random_state=42,
)
end_time = time.time()
print(f"Loading {split} dataset took {(end_time - start_time):.2f} seconds")
if split == "val":
return test_df
else:
return df.drop(test_df.index)
def extract_classes(self, tag=None):
"""Extracts the categories from the dataset."""
if tag is None:
self.has_labels = False
return []
splits = ["train", "test"] if self.is_baseline else ["train"]
# splits = ["train", "test"]
print(f"Loading categories from {splits}")
# concatenate all categories from relevant splits to find the unique ones.
self.categories = sorted(
pd.concat(
[pd.read_csv(join(self.path, f"{split}.csv"))[tag] for split in splits]
)
.fillna("NaN")
.unique()
.tolist()
)
if "NaN" in self.categories:
self.categories.remove("NaN")
if self.split != "test":
self.df = self.df.dropna(subset=[tag])
# compute the total number of categories - this name is fixed and will be used as a lookup during init
self.num_classes = len(self.categories)
# create a mapping from category to index
self.category_to_index = {
category: i for i, category in enumerate(self.categories)
}
self.has_labels = True
return [tag]
def __getitem__(self, i):
"""Returns an item from the dataset.
Args:
i (int): index of the item
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
x = list(self.df.iloc[i]) # id, latitude, longitude, {category}
output = {}
if "image" in self.output_type:
if self.streetclip:
img = Image.open(self.image_dict_names[f"{int(x[0])}.jpg"])
elif self.blur:
img = transforms.ToTensor()(
Image.open(self.image_dict_names[f"{int(x[0])}.jpg"])
)
u = GaussianBlur(kernel_size=13, sigma=2.0)
bottom_part = img[:, -14:, :].unsqueeze(0)
blurred_bottom = u(bottom_part)
img[:, -14:, :] = blurred_bottom.squeeze()
img = self.transforms(transforms.ToPILImage()(img))
else:
img = self.transforms(
Image.open(self.image_dict_names[f"{int(x[0])}.jpg"])
)
output["img"] = img
if "emb" in self.output_type:
output["emb"] = torch.FloatTensor(
np.load(self.emb_dict_names[f"{int(x[0])}.npy"])
)
lat, lon = normalize(x[1], x[2])
gps = torch.FloatTensor([np.radians(lat), np.radians(lon)]).squeeze(0)
output.update(
{
"gps": gps,
"idx": i,
"img_idx": int(x[0]),
"weight": x[3],
}
)
for count, area in enumerate(self.areas):
output[area] = x[
count + 4
] #'country': x[3], 'region': x[4], 'sub-region': x[5], 'city': x[6]}
if self.has_labels:
if x[-1] in self.categories:
output["label"] = torch.LongTensor(
[self.category_to_index[x[-1]]]
).squeeze(-1)
else:
output["label"] = torch.LongTensor([-1]).squeeze(-1)
if self.aux:
for col in self.aux_list:
output[col] = torch.FloatTensor(self.aux_data[col].iloc[i])
return output
def __len__(self):
return len(self.df)
class ContrastiveOSV5M(OSV5M):
def __init__(
self,
path,
transforms,
split="train",
class_name=None,
aux_data=[],
class_name2=None,
blur=False,
):
"""
class_name2 (str): if not None, we do contrastive an other class than the one specified for classif
"""
super().__init__(
path,
transforms,
split=split,
class_name=class_name,
aux_data=aux_data,
blur=blur,
)
self.add_label = False
if not (class_name2 is None) and split != "test" and split != "select":
self.add_label = True
self.class_name = class_name2
self.extract_classes_contrastive(tag=class_name2)
self.df = self.df.reset_index(drop=True)
self.dict_classes = {
value: indices.tolist()
for value, indices in self.df.groupby(self.class_name).groups.items()
}
self.collate_fn = collate_fn_contrastive
self.random_crop = RandomCrop(224) # use when no positive image is available
def sample_positive(self, i):
"""
sample positive image from the same city, country if it is available
otherwise, apply different crop to the image
"""
x = self.df.iloc[i] # id, latitude, longitude, {category}
class_name = x[self.class_name]
idxs = self.dict_classes[class_name]
idxs.remove(i)
if len(idxs) > 0:
idx = random.choice(idxs)
x = self.df.iloc[idx]
pos_img = self.transforms(
Image.open(self.dict_names[f"{int(x['id'])}.jpg"])
)
else:
pos_img = self.random_crop(
self.transforms(Image.open(self.dict_names[f"{int(x['id'])}.jpg"]))
)
return pos_img
def extract_classes_contrastive(self, tag=None):
"""Extracts the categories from the dataset."""
if tag is None:
self.has_labels = False
return []
splits = ["train", "test"] if self.is_baseline else ["train"]
# splits = ["train", "test"]
print(f"Loading categories from {splits}")
# concatenate all categories from relevant splits to find the unique ones.
categories = sorted(
pd.concat(
[pd.read_csv(join(self.path, f"{split}.csv"))[tag] for split in splits]
)
.fillna("NaN")
.unique()
.tolist()
)
# create a mapping from category to index
self.contrastive_category_to_index = {
category: i for i, category in enumerate(categories)
}
def __getitem__(self, i):
output = super().__getitem__(i)
pos_img = self.sample_positive(i)
output["pos_img"] = pos_img
if self.add_label:
output["label_contrastive"] = torch.LongTensor(
[self.contrastive_category_to_index[self.df[self.class_name].iloc[i]]]
).squeeze(-1)
return output
class TextContrastiveOSV5M(OSV5M):
def __init__(
self,
path,
transforms,
split="train",
class_name=None,
aux_data=[],
blur=False,
):
super().__init__(
path,
transforms,
split=split,
class_name=class_name,
aux_data=aux_data,
blur=blur,
)
self.df = self.df.reset_index(drop=True)
def get_text(self, i):
"""
sample positive image from the same city, country if it is available
otherwise, apply different crop to the image
"""
x = self.df.iloc[i] # id, latitude, longitude, {category}
l = [
name.split("_")[-1]
for name in [
x["unique_city"],
x["unique_sub-region"],
x["unique_region"],
x["unique_country"],
]
]
pre = False
sentence = "An image of "
if l[0] != "NaN":
sentence += "the city of "
sentence += l[0]
pre = True
if l[1] != "NaN":
if pre:
sentence += ", in "
sentence += "the area of "
sentence += l[1]
pre = True
if l[2] != "NaN":
if pre:
sentence += ", in "
sentence += "the region of "
sentence += l[2]
pre = True
if l[3] != "NaN":
if pre:
sentence += ", in "
sentence += l[3]
return sentence
def __getitem__(self, i):
output = super().__getitem__(i)
output["text"] = self.get_text(i)
return output
import os
import json
class Baseline(Dataset):
def __init__(
self,
path,
which,
transforms,
):
"""Initializes the dataset.
Args:
path (str): path to the dataset
which (str): which baseline to use (im2gps, im2gps3k)
transforms (torchvision.transforms): transforms to apply to the images
"""
baselines = {
"im2gps": self.load_im2gps,
"im2gps3k": self.load_im2gps,
"yfcc4k": self.load_yfcc4k,
}
self.path = path
self.samples = baselines[which]()
self.transforms = transforms
self.collate_fn = collate_fn
self.class_name = which
def load_im2gps(
self,
):
json_path = join(self.path, "info.json")
with open(json_path) as f:
data = json.load(f)
samples = []
for f in os.listdir(join(self.path, "images")):
if len(data[f]):
lat = float(data[f][-4].replace("latitude: ", ""))
lon = float(data[f][-3].replace("longitude: ", ""))
samples.append((f, lat, lon))
return samples
def load_yfcc4k(
self,
):
samples = []
with open(join(self.path, "info.txt")) as f:
lines = f.readlines()
for line in lines:
x = line.split("\t")
f, lon, lat = x[1], x[12], x[13]
samples.append((f + ".jpg", float(lat), float(lon)))
return samples
def __getitem__(self, i):
"""Returns an item from the dataset.
Args:
i (int): index of the item
Returns:
dict: dictionary with keys "img", "gps", "idx" and optionally "label"
"""
img_path, lat, lon = self.samples[i]
img = self.transforms(
Image.open(join(self.path, "images", img_path)).convert("RGB")
)
lat, lon = normalize(lat, lon)
gps = torch.FloatTensor([np.radians(lat), np.radians(lon)]).squeeze(0)
return {
"img": img,
"gps": gps,
"idx": i,
}
def __len__(self):
return len(self.samples)
null_transform = lambda x: x
|