Plonk / app.py
nicolas-dufour's picture
initial commit
99dc3ef
raw
history blame
13.7 kB
import streamlit as st
import pandas as pd
from PIL import Image
import torch
from pipe import PlonkPipeline
from pathlib import Path
from streamlit_extras.colored_header import colored_header
import plotly.express as px
import requests
from io import BytesIO
# Set page config
st.set_page_config(
page_title="Around the World in 80 Timesteps", page_icon="πŸ—ΊοΈ", layout="wide"
)
device = "cuda" if torch.cuda.is_available() else "cpu"
PROJECT_ROOT = Path(__file__).parent.parent.absolute()
# Define checkpoint path
CHECKPOINT_DIR = PROJECT_ROOT / "checkpoints"
MODEL_NAMES = {
"PLONK_YFCC": "nicolas-dufour/PLONK_YFCC",
"PLONK_OSV_5M": "nicolas-dufour/PLONK_OSV_5M",
"PLONK_iNaturalist": "nicolas-dufour/PLONK_iNaturalist",
}
@st.cache_resource
def load_model(model_name):
"""Load the model and cache it to prevent reloading"""
try:
pipe = PlonkPipeline(model_path=model_name)
return pipe
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.stop()
PIPES = {model_name: load_model(MODEL_NAMES[model_name]) for model_name in MODEL_NAMES}
def predict_location(image, model_name, cfg=0.0, num_samples=256):
with torch.no_grad():
batch = {"img": [], "emb": []}
# If image is already a PIL Image, use it directly
if isinstance(image, Image.Image):
img = image.convert("RGB")
else:
img = Image.open(image).convert("RGB")
pipe = PIPES[model_name]
# Get regular predictions
predicted_gps = pipe(img, batch_size=num_samples, cfg=cfg, num_steps=16)
# Get single high-confidence prediction
high_conf_gps = pipe(img, batch_size=1, cfg=2.0, num_steps=16)
return {
"lat": predicted_gps[:, 0].astype(float).tolist(),
"lon": predicted_gps[:, 1].astype(float).tolist(),
"high_conf_lat": high_conf_gps[0, 0].astype(float),
"high_conf_lon": high_conf_gps[0, 1].astype(float),
}
def load_example_images():
"""Load example images from the examples directory"""
examples_dir = Path(__file__).parent / "examples"
if not examples_dir.exists():
st.error(
"""
Examples directory not found. Please create the following structure:
demo/
└── examples/
β”œβ”€β”€ eiffel_tower.jpg
β”œβ”€β”€ colosseum.jpg
β”œβ”€β”€ taj_mahal.jpg
β”œβ”€β”€ statue_liberty.jpg
└── sydney_opera.jpg
"""
)
return {}
examples = {}
for img_path in examples_dir.glob("*.jpg"):
# Use filename without extension as the key
name = img_path.stem.replace("_", " ").title()
examples[name] = str(img_path)
if not examples:
st.warning("No example images found in the examples directory.")
return examples
def resize_image_for_display(image, max_size=400):
"""Resize image while maintaining aspect ratio"""
# Get current size
width, height = image.size
# Calculate ratio to maintain aspect ratio
if width > height:
if width > max_size:
ratio = max_size / width
new_size = (max_size, int(height * ratio))
else:
if height > max_size:
ratio = max_size / height
new_size = (int(width * ratio), max_size)
# Only resize if image is larger than max_size
if width > max_size or height > max_size:
return image.resize(new_size, Image.Resampling.LANCZOS)
return image
def load_image_from_url(url):
"""Load an image from a URL"""
try:
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
return Image.open(BytesIO(response.content))
except Exception as e:
st.error(f"Error loading image from URL: {str(e)}")
return None
def main():
# Custom CSS
st.markdown(
"""
<style>
.main {
padding: 0rem 1rem;
}
.stButton>button {
width: 100%;
background-color: #FF4B4B;
color: white;
border: none;
padding: 0.5rem 1rem;
border-radius: 0.5rem;
}
.stButton>button:hover {
background-color: #FF6B6B;
}
.prediction-box {
background-color: #f0f2f6;
padding: 1.5rem;
border-radius: 0.5rem;
margin: 1rem 0;
}
/* New styles for image containers */
.upload-container {
max-height: 300px;
overflow-y: auto;
margin-bottom: 1rem;
}
.examples-container {
max-height: 200px;
display: flex;
gap: 10px;
}
.stTabs [data-baseweb="tab-panel"] {
padding-top: 1rem;
}
</style>
""",
unsafe_allow_html=True,
)
# Header with custom styling
colored_header(
label="πŸ—ΊοΈ Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation",
description="Upload an image and our model, PLONK, will predict possible locations! In red we will sample one point with guidance scale 2.0 for the best guess. Project page: https://nicolas-dufour.github.io/plonk",
color_name="red-70",
)
# Adjust column ratio to give 2/3 of the space to the map
col1, col2 = st.columns([1, 2], gap="large")
with col1:
# Add model selection before the sliders
model_name = st.selectbox(
"πŸ€– Select Model",
options=MODEL_NAMES.keys(),
index=0, # Default to YFCC
help="Choose which PLONK model variant to use for prediction.",
)
# Modify the slider columns to accommodate both controls
col_slider1, col_slider2 = st.columns([0.5, 0.5])
with col_slider1:
cfg_value = st.slider(
"🎯 Guidance scale",
min_value=0.0,
max_value=5.0,
value=0.0,
step=0.1,
help="Scale for classifier-free guidance during sampling. A small value makes the model predictions display the diversity of the model, while a large value makes the model predictions more conservative but potentially more accurate.",
)
with col_slider2:
num_samples = st.number_input(
"🎲 Number of samples",
min_value=1,
max_value=5000,
value=64,
step=1,
help="Number of location predictions to generate. More samples give better coverage but take longer to compute.",
)
st.markdown("### πŸ“Έ Choose your image")
tab1, tab2, tab3 = st.tabs(["Upload", "URL", "Examples"])
with tab1:
uploaded_file = st.file_uploader(
"Choose an image...",
type=["png", "jpg", "jpeg"],
help="Supported formats: PNG, JPG, JPEG",
)
if uploaded_file is not None:
st.markdown('<div class="upload-container">', unsafe_allow_html=True)
original_image = Image.open(uploaded_file)
display_image = resize_image_for_display(
original_image.copy(), max_size=300
)
st.image(
display_image, caption="Uploaded Image", use_container_width=True
)
st.markdown("</div>", unsafe_allow_html=True)
if st.button("πŸ” Predict Location", key="predict_upload"):
with st.spinner("🌍 Analyzing image and predicting locations..."):
predictions = predict_location(
original_image,
model_name=model_name,
cfg=cfg_value,
num_samples=num_samples,
)
st.session_state["predictions"] = predictions
with tab2:
url = st.text_input("Enter image URL:", key="image_url")
if url:
image = load_image_from_url(url)
if image:
st.markdown(
'<div class="upload-container">', unsafe_allow_html=True
)
display_image = resize_image_for_display(image.copy(), max_size=300)
st.image(
display_image,
caption="Image from URL",
use_container_width=True,
)
st.markdown("</div>", unsafe_allow_html=True)
if st.button("πŸ” Predict Location", key="predict_url"):
with st.spinner(
"🌍 Analyzing image and predicting locations..."
):
predictions = predict_location(
image,
model_name=model_name,
cfg=cfg_value,
num_samples=num_samples,
)
st.session_state["predictions"] = predictions
with tab3:
examples = load_example_images()
st.markdown('<div class="examples-container">', unsafe_allow_html=True)
example_cols = st.columns(len(examples))
for idx, (name, path) in enumerate(examples.items()):
with example_cols[idx]:
original_image = Image.open(path)
display_image = resize_image_for_display(
original_image.copy(), max_size=150
)
if st.container().button(
"πŸ“Έ",
key=f"img_{name}",
help=f"Click to predict location for {name}",
use_container_width=True,
):
with st.spinner(
"🌍 Analyzing image and predicting locations..."
):
predictions = predict_location(
original_image,
model_name=model_name,
cfg=cfg_value,
num_samples=num_samples,
)
st.session_state["predictions"] = predictions
st.rerun()
st.image(display_image, caption=name, use_container_width=True)
st.markdown("</div>", unsafe_allow_html=True)
with col2:
st.markdown("### 🌍 Predicted Locations")
if "predictions" in st.session_state:
pred = st.session_state["predictions"]
# Create DataFrame for all predictions
df = pd.DataFrame(
{
"lat": pred["lat"],
"lon": pred["lon"],
"type": ["Sample"] * len(pred["lat"]),
}
)
# Add high-confidence prediction
df = pd.concat(
[
df,
pd.DataFrame(
{
"lat": [pred["high_conf_lat"]],
"lon": [pred["high_conf_lon"]],
"type": ["Best Guess"],
}
),
]
)
# Create a more interactive map using Plotly
fig = px.scatter_mapbox(
df,
lat="lat",
lon="lon",
zoom=2,
opacity=0.6,
color="type",
color_discrete_map={"Sample": "blue", "Best Guess": "red"},
mapbox_style="carto-positron",
)
fig.update_traces(selector=dict(name="Best Guess"), marker_size=15)
fig.update_layout(
margin={"r": 0, "t": 0, "l": 0, "b": 0},
height=500,
showlegend=True,
legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01),
)
# Display map in a container
with st.container():
st.plotly_chart(fig, use_container_width=True)
# Display stats in a styled container
with st.container():
st.markdown(
f"""
<div class="prediction-box">
<h4>πŸ“Š Prediction Statistics</h4>
<p>Number of sampled locations: {len(pred["lat"])}</p>
<p>Best guess location: {pred["high_conf_lat"]:.2f}Β°, {pred["high_conf_lon"]:.2f}Β°</p>
</div>
""",
unsafe_allow_html=True,
)
else:
# Empty state with better styling
st.markdown(
"""
<div class="prediction-box" style="text-align: center;">
<h4>πŸ‘† Upload an image and click 'Predict Location'</h4>
<p>The predicted locations will appear here on an interactive map.</p>
</div>
""",
unsafe_allow_html=True,
)
if __name__ == "__main__":
main()