Plonk / data /extract_embeddings /street_clip.py
raw
history blame
1.38 kB
import os, sys
# Ajouter le répertoire racine au chemin
root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
sys.path.append(root_dir)
from PIL import Image
from pathlib import Path
import torch
from transformers import CLIPProcessor, CLIPVisionModel
import numpy as np
from tqdm import tqdm
from data.extract_embeddings.dataset_with_path import ImageWithPathDataset
device = "cuda" if torch.cuda.is_available() else "cpu"
model = CLIPVisionModel.from_pretrained("geolocal/StreetCLIP").to(device)
processor = CLIPProcessor.from_pretrained("geolocal/StreetCLIP")
input_path = Path("datasets/osv5m/images")
output_path = Path("datasets/osv5m/embeddings/street_clip")
output_path.mkdir(exist_ok=True, parents=True)
dataset = ImageWithPathDataset(input_path)
batch_size = 128
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, num_workers=16, collate_fn=lambda x: zip(*x)
)
for images, output_emb_paths in tqdm(dataloader):
inputs = processor(images=images, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
embeddings = outputs.last_hidden_state[:, 0]
numpy_embeddings = embeddings.cpu().numpy()
for emb, output_emb_path in zip(numpy_embeddings, output_emb_paths):
np.save(f"{output_emb_path}.npy", emb)