Plonk / scripts /preprocessing /preprocess.py
nicolas-dufour's picture
squash: merge all unpushed commits
c4c7cee
import pandas as pd
import torch
import numpy as np
from os.path import join
import matplotlib.pyplot as plt
import hydra
class QuadTree(object):
def __init__(self, data, mins=None, maxs=None, id="", depth=3, do_split=1000):
self.id = id
self.data = data
if mins is None:
mins = data[["latitude", "longitude"]].to_numpy().min(0)
if maxs is None:
maxs = data[["latitude", "longitude"]].to_numpy().max(0)
self.mins = np.asarray(mins)
self.maxs = np.asarray(maxs)
self.sizes = self.maxs - self.mins
self.children = []
mids = 0.5 * (self.mins + self.maxs)
xmin, ymin = self.mins
xmax, ymax = self.maxs
xmid, ymid = mids
if (depth > 0) and (len(self.data) >= do_split):
# split the data into four quadrants
data_q1 = data[(data["latitude"] < mids[0]) & (data["longitude"] < mids[1])]
data_q2 = data[
(data["latitude"] < mids[0]) & (data["longitude"] >= mids[1])
]
data_q3 = data[
(data["latitude"] >= mids[0]) & (data["longitude"] < mids[1])
]
data_q4 = data[
(data["latitude"] >= mids[0]) & (data["longitude"] >= mids[1])
]
# recursively build a quad tree on each quadrant which has data
if data_q1.shape[0] > 0:
self.children.append(
QuadTree(
data_q1,
[xmin, ymin],
[xmid, ymid],
id + "0",
depth - 1,
do_split=do_split,
)
)
if data_q2.shape[0] > 0:
self.children.append(
QuadTree(
data_q2,
[xmin, ymid],
[xmid, ymax],
id + "1",
depth - 1,
do_split=do_split,
)
)
if data_q3.shape[0] > 0:
self.children.append(
QuadTree(
data_q3,
[xmid, ymin],
[xmax, ymid],
id + "2",
depth - 1,
do_split=do_split,
)
)
if data_q4.shape[0] > 0:
self.children.append(
QuadTree(
data_q4,
[xmid, ymid],
[xmax, ymax],
id + "3",
depth - 1,
do_split=do_split,
)
)
def unwrap(self):
if len(self.children) == 0:
return {self.id: [self.mins, self.maxs, self.data.copy()]}
else:
d = dict()
for child in self.children:
d.update(child.unwrap())
return d
def extract(qt, name_new_column):
cluster = qt.unwrap()
boundaries, data = {}, []
id_to_quad = np.array(list(cluster.keys()))
for i, (id, vs) in zip(np.arange(len(cluster)), cluster.items()):
(min_lat, min_lon), (max_lat, max_lon), points = vs
points[name_new_column] = int(i)
data.append(points)
boundaries[i] = (
float(min_lat),
float(min_lon),
float(max_lat),
float(max_lon),
points["latitude"].mean(),
points["longitude"].mean(),
)
data = pd.concat(data)
return boundaries, data, id_to_quad
def vizu(name_new_column, df_train, boundaries, save_path):
plt.hist(df_train[name_new_column], bins=len(boundaries))
plt.xlabel("Cluster ID")
plt.ylabel("Number of images")
plt.title("Cluster distribution")
plt.yscale("log")
plt.savefig(join(save_path, f"{name_new_column}_distrib.png"))
plt.clf()
plt.scatter(
df_train["longitude"].to_numpy(),
df_train["latitude"].to_numpy(),
c=np.random.permutation(len(boundaries))[df_train[name_new_column].to_numpy()],
cmap="tab20",
s=0.1,
alpha=0.5,
)
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.title("Quadtree map")
plt.savefig(join(save_path, f"{name_new_column}_map.png"))
@hydra.main(
config_path="../../configs/scripts",
config_name="preprocess",
version_base=None,
)
def main(cfg):
data_path = join(cfg.data_dir, "osv5m")
save_path = cfg.data_dir
name_new_column = f"quadtree_{cfg.depth}_{cfg.do_split}"
# Create clusters from train images
train_fp = join(data_path, f"train.csv")
df_train = pd.read_csv(train_fp, low_memory=False)
qt = QuadTree(df_train, depth=cfg.depth, do_split=cfg.do_split)
boundaries, df_train, id_to_quad = extract(qt, name_new_column)
vizu(name_new_column, df_train, boundaries, save_path)
# Save clusters
boundaries = pd.DataFrame.from_dict(
boundaries,
orient="index",
columns=["min_lat", "min_lon", "max_lat", "max_lon", "mean_lat", "mean_lon"],
)
boundaries.to_csv(
join(save_path, f"{name_new_column}.csv"), index_label="cluster_id"
)
# Assign test images to clusters
test_fp = join(data_path, f"test.csv")
df_test = pd.read_csv(test_fp)
above_lat = np.expand_dims(df_test["latitude"].to_numpy(), -1) > np.expand_dims(
boundaries["min_lat"].to_numpy(), 0
)
below_lat = np.expand_dims(df_test["latitude"].to_numpy(), -1) < np.expand_dims(
boundaries["max_lat"].to_numpy(), 0
)
above_lon = np.expand_dims(df_test["longitude"].to_numpy(), -1) > np.expand_dims(
boundaries["min_lon"].to_numpy(), 0
)
below_lon = np.expand_dims(df_test["longitude"].to_numpy(), -1) < np.expand_dims(
boundaries["max_lon"].to_numpy(), 0
)
mask = np.logical_and(
np.logical_and(above_lat, below_lat), np.logical_and(above_lon, below_lon)
)
df_test[name_new_column] = np.argmax(mask, axis=1)
# save index_to_gps_quadtree file
lat = torch.tensor(boundaries["mean_lat"])
lon = torch.tensor(boundaries["mean_lon"])
coord = torch.stack([lat, lon], dim=-1)
torch.save(
coord, join(save_path, f"index_to_gps_quadtree_{cfg.depth}_{cfg.do_split}.pt")
)
torch.save(id_to_quad, join(save_path, f"id_to_quad_{cfg.depth}_{cfg.do_split}.pt"))
# Overwrite test.csv and train.csv
if cfg.overwrite_csv:
df_train.to_csv(train_fp, index=False)
df_test.to_csv(test_fp, index=False)
df = pd.read_csv(join(data_path, "train.csv"), low_memory=False).fillna("NaN")
# Compute the average location for each unique country
country_avg = (
df.groupby("unique_country")[["latitude", "longitude"]].mean().reset_index()
)
country_avg.to_csv(
join(save_path, "country_center.csv"),
columns=["unique_country", "latitude", "longitude"],
index=False,
)
# Compute the average location for each unique admin1 (region)
region_avg = (
df.groupby(["unique_region"])[["latitude", "longitude"]].mean().reset_index()
)
region_avg.to_csv(
join(save_path, "region_center.csv"),
columns=["unique_region", "latitude", "longitude"],
index=False,
)
# Compute the average location for each unique admin2 (area)
area_avg = (
df.groupby(["unique_sub-region"])[["latitude", "longitude"]]
.mean()
.reset_index()
)
area_avg.to_csv(
join(save_path, "sub-region_center.csv"),
columns=["unique_sub-region", "latitude", "longitude"],
index=False,
)
# Compute the average location for each unique city
city_avg = (
df.groupby(["unique_city"])[["latitude", "longitude"]].mean().reset_index()
)
city_avg.to_csv(
join(save_path, "city_center.csv"),
columns=["unique_city", "latitude", "longitude"],
index=False,
)
for class_name in [
"unique_country",
"unique_sub-region",
"unique_region",
"unique_city",
]:
# Load CSV data into a Pandas DataFrame
csv_file = class_name.split("_")[-1] + "_center.csv"
df = pd.read_csv(join(save_path, csv_file), low_memory=False)
splits = ["train"]
categories = sorted(
pd.concat(
[
pd.read_csv(
join(data_path, f"{split}.csv"), low_memory=False
)[class_name]
for split in splits
]
)
.fillna("NaN")
.unique()
.tolist()
)
if "NaN" in categories:
categories.remove("NaN")
# compute the total number of categories - this name is fixed and will be used as a lookup during init
num_classes = len(categories)
# create a mapping from category to index
category_to_index = {category: i for i, category in enumerate(categories)}
dictionary = torch.zeros((num_classes, 2))
for index, row in df.iterrows():
key = row.iloc[0]
value = [row.iloc[1], row.iloc[2]]
if key in categories:
(
dictionary[category_to_index[key], 0],
dictionary[category_to_index[key], 1],
) = np.radians(row.iloc[1]), np.radians(row.iloc[2])
# Save the PyTorch tensor to a .pt file
output_file = join(save_path, "index_to_gps_" + class_name + ".pt")
torch.save(dictionary, output_file)
train = pd.read_csv(join(data_path, "train.csv"), low_memory=False).fillna(
"NaN"
)
u = train.groupby("unique_city").sample(n=1)
country_df = (
u.pivot(index="unique_city", columns="unique_country", values="unique_city")
.notna()
.astype(int)
.fillna(0)
)
country_to_idx = {
category: i for i, category in enumerate(list(country_df.columns))
}
city_country_matrix = torch.tensor(country_df.values) / 1.0
region_df = (
u.pivot(index="unique_city", columns="unique_region", values="unique_city")
.notna()
.astype(int)
.fillna(0)
)
region_to_idx = {category: i for i, category in enumerate(list(region_df.columns))}
city_region_matrix = torch.tensor(region_df.values) / 1.0
country_df = (
u.pivot(index="unique_city", columns="unique_country", values="unique_city")
.notna()
.astype(int)
.fillna(0)
)
country_to_idx = {
category: i for i, category in enumerate(list(country_df.columns))
}
city_country_matrix = torch.tensor(country_df.values) / 1.0
output_file = join(save_path, "city_to_country.pt")
torch.save(city_country_matrix, output_file)
output_file = join(save_path, "country_to_idx.pt")
torch.save(country_to_idx, output_file)
region_df = (
u.pivot(index="unique_city", columns="unique_region", values="unique_city")
.notna()
.astype(int)
.fillna(0)
)
region_to_idx = {category: i for i, category in enumerate(list(region_df.columns))}
city_region_matrix = torch.tensor(region_df.values) / 1.0
output_file = join(save_path, "city_to_region.pt")
torch.save(city_region_matrix, output_file)
output_file = join(save_path, "region_to_idx.pt")
torch.save(region_to_idx, output_file)
area_df = (
u.pivot(index="unique_city", columns="unique_sub-region", values="unique_city")
.notna()
.astype(int)
.fillna(0)
)
area_to_idx = {category: i for i, category in enumerate(list(area_df.columns))}
city_area_matrix = torch.tensor(area_df.values) / 1.0
output_file = join(save_path, "city_to_area.pt")
torch.save(city_area_matrix, output_file)
output_file = join(save_path, "area_to_idx.pt")
torch.save(area_to_idx, output_file)
gt = torch.load(join(save_path, f"id_to_quad_{cfg.depth}_{cfg.do_split}.pt"))
matrixes = []
dicts = []
for i in range(1, cfg.depth):
# Step 2: Truncate strings to size cfg.depth - 1
l = [s[: cfg.depth - i] if len(s) >= cfg.depth + 1 - i else s for s in gt]
# Step 3: Get unique values in the modified list l
h = list(set(l))
# Step 4: Create a dictionary to map unique values to their index
h_dict = {value: index for index, value in enumerate(h)}
dicts.append(h_dict)
# Step 5: Initialize a torch matrix with zeros
matrix = torch.zeros((len(gt), len(h)))
# Step 6: Fill in the matrix with 1s based on the mapping
for h in range(len(gt)):
j = h_dict[l[h]]
matrix[h, j] = 1
matrixes.append(matrix)
output_file = join(save_path, "quadtree_matrixes.pt")
torch.save(matrixes, output_file)
output_file = join(save_path, "quadtree_dicts.pt")
torch.save(dicts, output_file)
if __name__ == "__main__":
main()