CLIPSeg / app.py
nielsr's picture
nielsr HF staff
Update app.py
965c521
raw
history blame
2.03 kB
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import cv2
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
def process_image(image, prompt):
inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt")
# predict
with torch.no_grad():
outputs = model(**inputs)
preds = outputs.logits
filename = f"mask.png"
plt.imsave(filename, torch.sigmoid(preds))
# # img2 = cv2.imread(filename)
# # gray_image = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# # (thresh, bw_image) = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY)
# # # fix color format
# # cv2.cvtColor(bw_image, cv2.COLOR_BGR2RGB)
# # return Image.fromarray(bw_image)
# return Image.open("mask.png").convert("RGB")
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
examples = [["example_image.png", "wood"]]
interface = gr.Interface(fn=process_image,
inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")],
outputs=gr.Image(type="pil"),
title=title,
description=description,
article=article,
examples=examples)
interface.launch(debug=True)