Spaces:
Runtime error
Runtime error
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation | |
import gradio as gr | |
from PIL import Image | |
import torch | |
import matplotlib.pyplot as plt | |
import cv2 | |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") | |
def process_image(image, prompt): | |
inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt") | |
# predict | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
preds = outputs.logits | |
filename = f"mask.png" | |
plt.imsave(filename, torch.sigmoid(preds)) | |
# # img2 = cv2.imread(filename) | |
# # gray_image = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) | |
# # (thresh, bw_image) = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY) | |
# # # fix color format | |
# # cv2.cvtColor(bw_image, cv2.COLOR_BGR2RGB) | |
# # return Image.fromarray(bw_image) | |
# return Image.open("mask.png").convert("RGB") | |
title = "Interactive demo: zero-shot image segmentation with CLIPSeg" | |
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>" | |
examples = [["example_image.png", "wood"]] | |
interface = gr.Interface(fn=process_image, | |
inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")], | |
outputs=gr.Image(type="pil"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples) | |
interface.launch(debug=True) |