File size: 2,083 Bytes
297128e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
os.system('pip install git+https://github.com/nielsrogge/transformers.git@add_tr_ocr --upgrade')

import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import requests
from PIL import Image

processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")

# load image example from the IAM database
url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg'
image = Image.open(requests.get(url, stream=True).raw)
image.save("image.png")

def process_image(image):
    # prepare image
    pixel_values = processor(image, return_tensors="pt").pixel_values

    # generate (no beam search)
    generated_ids = model.generate(pixel_values)

    # decode
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

    return generated_text

title = "Interactive demo: TrOCR"
description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload a (single-text line) image or use the example image below and click 'submit'. Results will show up in a few seconds."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
examples =[["image.png"]]

#css = """.output_image, .input_image {height: 600px !important}"""

iface = gr.Interface(fn=process_image, 
                     inputs=gr.inputs.Image(type="pil"), 
                     outputs=gr.outputs.Textbox(),
                     title=title,
                     description=description,
                     article=article,
                     examples=examples)
iface.launch(debug=True)