Spaces:
Runtime error
Runtime error
Add more image examples
Browse files
app.py
CHANGED
@@ -9,10 +9,12 @@ from PIL import Image
|
|
9 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
10 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
11 |
|
12 |
-
# load image
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
16 |
|
17 |
def process_image(image):
|
18 |
# prepare image
|
@@ -29,7 +31,7 @@ def process_image(image):
|
|
29 |
title = "Interactive demo: TrOCR"
|
30 |
description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload a (single-text line) image or use the example image below and click 'submit'. Results will show up in a few seconds."
|
31 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
|
32 |
-
examples =[["
|
33 |
|
34 |
#css = """.output_image, .input_image {height: 600px !important}"""
|
35 |
|
|
|
9 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
10 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
11 |
|
12 |
+
# load image examples
|
13 |
+
urls = ['https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU',
|
14 |
+
'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU']
|
15 |
+
for idx, url in enumerate(urls):
|
16 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
17 |
+
image.save(f"image_{idx}.png")
|
18 |
|
19 |
def process_image(image):
|
20 |
# prepare image
|
|
|
31 |
title = "Interactive demo: TrOCR"
|
32 |
description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload a (single-text line) image or use the example image below and click 'submit'. Results will show up in a few seconds."
|
33 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
|
34 |
+
examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]]
|
35 |
|
36 |
#css = """.output_image, .input_image {height: 600px !important}"""
|
37 |
|