|
import gradio as gr |
|
from transformers import AutoProcessor, AutoModelForCausalLM, BlipForConditionalGeneration |
|
import torch |
|
|
|
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') |
|
|
|
git_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco") |
|
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") |
|
|
|
blip_processor = AutoProcessor.from_pretrained("Salesfoce/blip-image-captioning-base") |
|
blip_model = BlipForConditionalGeneration.from_pretrained("Salesfoce/blip-image-captioning-base") |
|
|
|
def generate_caption(processor, model, image): |
|
inputs = processor(image=image, return_tensors="pt") |
|
|
|
generated_ids = model.generate(pixel_values=pixel_values, max_length=50) |
|
|
|
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
return generated_caption |
|
|
|
|
|
def generate_captions(image): |
|
caption_git = generate_caption(git_processor, git_model, image) |
|
|
|
caption_blip = generate_caption(blip_processor, blip_model, image) |
|
|
|
return caption_git, caption_blip |
|
|
|
|
|
examples = [["cats.jpg"]] |
|
|
|
title = "Interactive demo: ViLT" |
|
description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on VQAv2, a model that can answer questions from images. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2102.03334' target='_blank'>ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision</a> | <a href='https://github.com/dandelin/ViLT' target='_blank'>Github Repo</a></p>" |
|
|
|
interface = gr.Interface(fn=answer_question, |
|
inputs=gr.inputs.Image(type="pil"), |
|
outputs=[gr.outputs.Textbox(label="Generated caption by GIT"), gr.outputs.Textbox(label="Generated caption by BLIP")], |
|
examples=examples, |
|
title=title, |
|
description=description, |
|
article=article, |
|
enable_queue=True) |
|
interface.launch(debug=True) |