nielsr's picture
nielsr HF staff
Update app.py
6591707
import gradio as gr
import requests
from PIL import Image
import os
import torch
import numpy as np
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution
torch.hub.download_url_to_file('https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/00003.jpg', '00003.jpg')
torch.hub.download_url_to_file('https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/0855.jpg', '0855.jpg')
torch.hub.download_url_to_file('https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/ali_eye.jpg', 'ali_eye.jpg')
torch.hub.download_url_to_file('https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg', 'butterfly.jpg')
torch.hub.download_url_to_file('https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/chain-eye.jpg', 'chain-eye.jpg')
torch.hub.download_url_to_file('https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/gojou-eyes.jpg', 'gojou-eyes.jpg')
torch.hub.download_url_to_file('https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/shanghai.jpg', 'shanghai.jpg')
torch.hub.download_url_to_file('https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/vagabond.jpg', 'vagabond.jpg')
processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
def enhance(image):
# prepare image for the model
inputs = processor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# postprocess
output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
return Image.fromarray(output)
title = "Demo: Swin2SR for Image Super-Resolution πŸš€πŸš€πŸ”₯"
description = '''
**This demo expects low-quality and low-resolution JPEG compressed images.**
**Demo notebook can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Swin2SR/Perform_image_super_resolution_with_Swin2SR.ipynb).
'''
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2209.11345' target='_blank'>Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/swin2sr' target='_blank'>HuggingFace docs</a></p>"
examples = [['00003.jpg'], ['0855.jpg'], ['ali_eye.jpg'], ['butterfly.jpg'], ['chain-eye.jpg'], ['gojou-eyes.jpg'], ['shanghai.jpg'], ['vagabond.jpg']]
gr.Interface(
enhance,
gr.inputs.Image(type="pil", label="Input").style(height=260),
gr.inputs.Image(type="pil", label="Ouput").style(height=240),
title=title,
description=description,
article=article,
examples=examples,
).launch(enable_queue=True)