|
""" |
|
Audio processing tools to convert between spectrogram images and waveforms. |
|
""" |
|
import io |
|
import typing as T |
|
|
|
import numpy as np |
|
from PIL import Image |
|
import pydub |
|
from scipy.io import wavfile |
|
import torch |
|
import torchaudio |
|
|
|
|
|
def wav_bytes_from_spectrogram_image(image: Image.Image) -> T.Tuple[io.BytesIO, float]: |
|
""" |
|
Reconstruct a WAV audio clip from a spectrogram image. Also returns the duration in seconds. |
|
""" |
|
|
|
max_volume = 50 |
|
power_for_image = 0.25 |
|
Sxx = spectrogram_from_image(image, max_volume=max_volume, power_for_image=power_for_image) |
|
|
|
sample_rate = 44100 |
|
clip_duration_ms = 5000 |
|
|
|
bins_per_image = 512 |
|
n_mels = 512 |
|
|
|
|
|
window_duration_ms = 100 |
|
padded_duration_ms = 400 |
|
step_size_ms = 10 |
|
|
|
|
|
num_samples = int(image.width / float(bins_per_image) * clip_duration_ms) * sample_rate |
|
n_fft = int(padded_duration_ms / 1000.0 * sample_rate) |
|
hop_length = int(step_size_ms / 1000.0 * sample_rate) |
|
win_length = int(window_duration_ms / 1000.0 * sample_rate) |
|
|
|
samples = waveform_from_spectrogram( |
|
Sxx=Sxx, |
|
n_fft=n_fft, |
|
hop_length=hop_length, |
|
win_length=win_length, |
|
num_samples=num_samples, |
|
sample_rate=sample_rate, |
|
mel_scale=True, |
|
n_mels=n_mels, |
|
max_mel_iters=200, |
|
num_griffin_lim_iters=32, |
|
) |
|
|
|
wav_bytes = io.BytesIO() |
|
wavfile.write(wav_bytes, sample_rate, samples.astype(np.int16)) |
|
wav_bytes.seek(0) |
|
|
|
duration_s = float(len(samples)) / sample_rate |
|
|
|
return wav_bytes, duration_s |
|
|
|
|
|
def spectrogram_from_image( |
|
image: Image.Image, max_volume: float = 50, power_for_image: float = 0.25 |
|
) -> np.ndarray: |
|
""" |
|
Compute a spectrogram magnitude array from a spectrogram image. |
|
|
|
TODO(hayk): Add image_from_spectrogram and call this out as the reverse. |
|
""" |
|
|
|
data = np.array(image).astype(np.float32) |
|
|
|
|
|
data = data[::-1, :, 0] |
|
|
|
|
|
data = 255 - data |
|
|
|
|
|
data = data * max_volume / 255 |
|
|
|
|
|
data = np.power(data, 1 / power_for_image) |
|
|
|
return data |
|
|
|
|
|
def spectrogram_from_waveform( |
|
waveform: np.ndarray, |
|
sample_rate: int, |
|
n_fft: int, |
|
hop_length: int, |
|
win_length: int, |
|
mel_scale: bool = True, |
|
n_mels: int = 512, |
|
) -> np.ndarray: |
|
""" |
|
Compute a spectrogram from a waveform. |
|
""" |
|
|
|
spectrogram_func = torchaudio.transforms.Spectrogram( |
|
n_fft=n_fft, |
|
power=None, |
|
hop_length=hop_length, |
|
win_length=win_length, |
|
) |
|
|
|
waveform_tensor = torch.from_numpy(waveform.astype(np.float32)).reshape(1, -1) |
|
Sxx_complex = spectrogram_func(waveform_tensor).numpy()[0] |
|
|
|
Sxx_mag = np.abs(Sxx_complex) |
|
|
|
if mel_scale: |
|
mel_scaler = torchaudio.transforms.MelScale( |
|
n_mels=n_mels, |
|
sample_rate=sample_rate, |
|
f_min=0, |
|
f_max=10000, |
|
n_stft=n_fft // 2 + 1, |
|
norm=None, |
|
mel_scale="htk", |
|
) |
|
|
|
Sxx_mag = mel_scaler(torch.from_numpy(Sxx_mag)).numpy() |
|
|
|
return Sxx_mag |
|
|
|
|
|
def waveform_from_spectrogram( |
|
Sxx: np.ndarray, |
|
n_fft: int, |
|
hop_length: int, |
|
win_length: int, |
|
num_samples: int, |
|
sample_rate: int, |
|
mel_scale: bool = True, |
|
n_mels: int = 512, |
|
max_mel_iters: int = 200, |
|
num_griffin_lim_iters: int = 32, |
|
device: str = "cuda:0", |
|
) -> np.ndarray: |
|
""" |
|
Reconstruct a waveform from a spectrogram. |
|
|
|
This is an approximate inverse of spectrogram_from_waveform, using the Griffin-Lim algorithm |
|
to approximate the phase. |
|
""" |
|
Sxx_torch = torch.from_numpy(Sxx).to(device) |
|
|
|
|
|
|
|
if mel_scale: |
|
mel_inv_scaler = torchaudio.transforms.InverseMelScale( |
|
n_mels=n_mels, |
|
sample_rate=sample_rate, |
|
f_min=0, |
|
f_max=10000, |
|
n_stft=n_fft // 2 + 1, |
|
norm=None, |
|
mel_scale="htk", |
|
max_iter=max_mel_iters, |
|
).to(device) |
|
|
|
Sxx_torch = mel_inv_scaler(Sxx_torch) |
|
|
|
griffin_lim = torchaudio.transforms.GriffinLim( |
|
n_fft=n_fft, |
|
win_length=win_length, |
|
hop_length=hop_length, |
|
power=1.0, |
|
n_iter=num_griffin_lim_iters, |
|
).to(device) |
|
|
|
waveform = griffin_lim(Sxx_torch).cpu().numpy() |
|
|
|
return waveform |
|
|
|
|
|
def mp3_bytes_from_wav_bytes(wav_bytes: io.BytesIO) -> io.BytesIO: |
|
mp3_bytes = io.BytesIO() |
|
sound = pydub.AudioSegment.from_wav(wav_bytes) |
|
sound.export(mp3_bytes, format="mp3") |
|
mp3_bytes.seek(0) |
|
return mp3_bytes |