File size: 22,240 Bytes
4092142
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8278a5
ee7b424
6b40299
5611ce6
1fd85ff
f4bf902
e486878
 
 
a39ebe0
26c682b
196d0c8
 
 
 
 
f52008b
acba201
c8278a5
 
e5bcfa7
c8278a5
 
acba201
7f60efc
2385385
 
 
 
 
83254a9
40da5bf
 
 
d4278eb
acba201
 
 
26c682b
5611ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc5944
 
 
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196d0c8
 
 
 
 
0d06105
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20bd81e
a277bb8
75afff1
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f753e98
31bd1d5
9a4feb1
a277bb8
196d0c8
a277bb8
 
 
 
31bd1d5
a277bb8
63e6330
a277bb8
31bd1d5
 
63e6330
a277bb8
 
 
 
 
31bd1d5
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff3ddf
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc5944
a277bb8
 
9d54457
31bd1d5
a277bb8
 
 
 
 
31bd1d5
a277bb8
63e6330
a277bb8
31bd1d5
 
a277bb8
 
 
 
 
 
31bd1d5
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff3ddf
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc5944
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20bd81e
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31bd1d5
a277bb8
 
 
 
 
 
 
 
20b771d
a277bb8
6196fc3
a277bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
31bd1d5
a277bb8
 
 
1fd85ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import spaces
import gradio as gr
import copy
import random
import torch
import PIL
from PIL import Image, ImageDraw, ImageFont
import torchvision.transforms.functional as F
import numpy as np
import argparse
import json
import plotly.express as px
import pandas as pd
from util.slconfig import SLConfig, DictAction
from util.misc import nested_tensor_from_tensor_list
import datasets.transforms as T
import scipy.ndimage as ndimage
import matplotlib.pyplot as plt
# https://github.com/PhyscalX/gradio-image-prompter/tree/main/backend/gradio_image_prompter/templates/component
import io
from enum import Enum
import os
import subprocess
from subprocess import call
import shlex
import shutil
#os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), "tmp")
cwd = os.getcwd()
# Suppress warnings to avoid overflowing the log.
import warnings
warnings.filterwarnings("ignore")

# Installing dependencies not in requirements.txt
subprocess.run(
    shlex.split(
        "pip install gradio_image_prompter-0.1.0-py3-none-any.whl"
    )
)
from gradio_image_prompter import ImagePrompter
"""
subprocess.run(
    shlex.split(
        "pip install MultiScaleDeformableAttention-1.0-cp310-cp310-linux_x86_64.whl"
    )
)
"""
"""
subprocess.run(
    shlex.split(
        "python test.py"
    )
)
"""
#with open('./switch_cuda.sh', 'rb') as file:
#    script = file.read()
#call(script, shell=True)

with open('./build_ops.sh', 'rb') as file:
    script = file.read()
call(script, shell=True)

def find_cuda():
    # Check if CUDA_HOME or CUDA_PATH environment variables are set
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')

    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    # Search for the nvcc executable in the system's PATH
    nvcc_path = shutil.which('nvcc')

    if nvcc_path:
        # Remove the 'bin/nvcc' part to get the CUDA installation path
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None

cuda_path = find_cuda()

class AppSteps(Enum):
    JUST_TEXT = 1
    TEXT_AND_EXEMPLARS = 2
    JUST_EXEMPLARS = 3
    FULL_APP = 4

CONF_THRESH = 0.23

# MODEL:
def get_args_parser():
    """
    Example eval command:
    >> python main.py --output_dir ./gdino_test -c config/cfg_fsc147_vit_b_test.py --eval --datasets config/datasets_fsc147.json --pretrain_model_path ../checkpoints_and_logs/gdino_train/checkpoint_best_regular.pth --options text_encoder_type=checkpoints/bert-base-uncased --sam_tt_norm --crop
    """
    parser = argparse.ArgumentParser("Set transformer detector", add_help=False)
    parser.add_argument(
        "--device", default="cuda", help="device to use for inference"
    )
    parser.add_argument(
        "--options",
        nargs="+",
        action=DictAction,
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file.",
    )

    # dataset parameters
    parser.add_argument("--remove_difficult", action="store_true")
    parser.add_argument("--fix_size", action="store_true")

    # training parameters
    parser.add_argument("--note", default="", help="add some notes to the experiment")
    parser.add_argument("--resume", default="", help="resume from checkpoint")
    parser.add_argument(
        "--pretrain_model_path",
        help="load from other checkpoint",
        default="checkpoint_best_regular.pth",
    )
    parser.add_argument("--finetune_ignore", type=str, nargs="+")
    parser.add_argument(
        "--start_epoch", default=0, type=int, metavar="N", help="start epoch"
    )
    parser.add_argument("--eval", action="store_false")
    parser.add_argument("--num_workers", default=8, type=int)
    parser.add_argument("--test", action="store_true")
    parser.add_argument("--debug", action="store_true")
    parser.add_argument("--find_unused_params", action="store_true")
    parser.add_argument("--save_results", action="store_true")
    parser.add_argument("--save_log", action="store_true")

    # distributed training parameters
    parser.add_argument(
        "--world_size", default=1, type=int, help="number of distributed processes"
    )
    parser.add_argument(
        "--dist_url", default="env://", help="url used to set up distributed training"
    )
    parser.add_argument(
        "--rank", default=0, type=int, help="number of distributed processes"
    )
    parser.add_argument(
        "--local_rank", type=int, help="local rank for DistributedDataParallel"
    )
    parser.add_argument(
        "--local-rank", type=int, help="local rank for DistributedDataParallel"
    )
    parser.add_argument("--amp", action="store_true", help="Train with mixed precision")
    return parser

def get_device():
    if torch.cuda.is_available():
        return torch.device('cuda')
    else:
        return torch.device('cpu')

# Get counting model.
def build_model_and_transforms(args):
    normalize = T.Compose(
        [T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]
    )
    data_transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            normalize,
        ]
    )
    cfg = SLConfig.fromfile("cfg_app.py")
    cfg.merge_from_dict({"text_encoder_type": "checkpoints/bert-base-uncased"})
    cfg_dict = cfg._cfg_dict.to_dict()
    args_vars = vars(args)
    for k, v in cfg_dict.items():
        if k not in args_vars:
            setattr(args, k, v)
        else:
            raise ValueError("Key {} can used by args only".format(k))

    # fix the seed for reproducibility
    seed = 42
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)

    # we use register to maintain models from catdet6 on.
    from models.registry import MODULE_BUILD_FUNCS

    assert args.modelname in MODULE_BUILD_FUNCS._module_dict

    build_func = MODULE_BUILD_FUNCS.get(args.modelname)
    model, _, _ = build_func(args)

    checkpoint = torch.load(args.pretrain_model_path, map_location="cpu")["model"]
    model.load_state_dict(checkpoint, strict=False)

    model.eval()

    return model, data_transform


parser = argparse.ArgumentParser("Counting Application", parents=[get_args_parser()])
args = parser.parse_args()
device = get_device()
model, transform = build_model_and_transforms(args)
model = model.to(device)

examples = [
    ["strawberry.jpg", "strawberry", {"image": "strawberry.jpg"}],
    ["strawberry.jpg", "blueberry", {"image": "strawberry.jpg"}],
    ["bird-1.JPG", "bird", {"image": "bird-2.JPG"}],
    ["fish.jpg", "fish", {"image": "fish.jpg"}],
    ["women.jpg", "girl", {"image": "women.jpg"}],
    ["women.jpg", "boy", {"image": "women.jpg"}],
    ["balloon.jpg", "hot air balloon", {"image": "balloon.jpg"}],
    ["deer.jpg", "deer", {"image": "deer.jpg"}],
    ["apple.jpg", "apple", {"image": "apple.jpg"}],
    ["egg.jpg", "egg", {"image": "egg.jpg"}],
    ["stamp.jpg", "stamp", {"image": "stamp.jpg"}],
    ["green-pea.jpg", "green pea", {"image": "green-pea.jpg"}],
    ["lego.jpg", "lego", {"image": "lego.jpg"}]
]

# APP:
def get_box_inputs(prompts):
    box_inputs = []
    for prompt in prompts:
        if prompt[2] == 2.0 and prompt[5] == 3.0:
            box_inputs.append([prompt[0], prompt[1], prompt[3], prompt[4]])

    return box_inputs

def get_ind_to_filter(text, word_ids, keywords):
    if len(keywords) <= 0:
        return list(range(len(word_ids)))
    input_words = text.split()
    keywords = keywords.split(",")
    keywords = [keyword.strip() for keyword in keywords]

    word_inds = []
    for keyword in keywords:
        if keyword in input_words:
            if len(word_inds) <= 0:
                ind = input_words.index(keyword)
                word_inds.append(ind)
            else:
                ind = input_words.index(keyword, word_inds[-1])
                word_inds.append(ind)
        else:
            raise Exception("Only specify keywords in the input text!")

    inds_to_filter = []
    for ind in range(len(word_ids)):
        word_id = word_ids[ind]
        if word_id in word_inds:
            inds_to_filter.append(ind)

    return inds_to_filter

@spaces.GPU(duration=120)
def count(image, text, prompts, state, device):

    keywords = "" # do not handle this for now
    
    # Handle no prompt case.
    if prompts is None:
        prompts = {"image": image, "points": []}
    input_image, _ = transform(image, {"exemplars": torch.tensor([])})
    input_image = input_image.unsqueeze(0).to(device)
    exemplars = get_box_inputs(prompts["points"])
    
    input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
    input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
    exemplars = [exemplars["exemplars"].to(device)]

    with torch.no_grad():
        model_output = model(
                nested_tensor_from_tensor_list(input_image),
                nested_tensor_from_tensor_list(input_image_exemplars),
                exemplars,
                [torch.tensor([0]).to(device) for _ in range(len(input_image))],
                captions=[text + " ."] * len(input_image),
            )
    
    ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
    logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
    boxes = model_output["pred_boxes"][0]
    if len(keywords.strip()) > 0:
        box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
    else:
        box_mask = logits.max(dim=-1).values > CONF_THRESH
    logits = logits[box_mask, :].cpu().numpy()
    boxes = boxes[box_mask, :].cpu().numpy()
    
    # Plot results.
    (w, h) = image.size
    det_map = np.zeros((h, w))
    det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
    det_map = ndimage.gaussian_filter(
        det_map, sigma=(w // 200, w // 200), order=0
    )
    plt.imshow(image)
    plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
    plt.axis('off')
    img_buf = io.BytesIO()
    plt.savefig(img_buf, format='png', bbox_inches='tight')
    plt.close()

    output_img = Image.open(img_buf)

    if AppSteps.TEXT_AND_EXEMPLARS not in state:
        exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
        new_submit_btn = gr.Button("Count", variant="primary", interactive=False)
        state = [AppSteps.JUST_TEXT, AppSteps.TEXT_AND_EXEMPLARS]
        main_instructions_comp = gr.Markdown(visible=False)
        step_3 = gr.Tab(visible=False)
    elif AppSteps.FULL_APP not in state:
        exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
        new_submit_btn = submit_btn
        state = [AppSteps.JUST_TEXT, AppSteps.TEXT_AND_EXEMPLARS, AppSteps.FULL_APP]
        main_instructions_comp = gr.Markdown(visible=True)
        step_3 = gr.Tab(visible=True)
    else:
        exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', value=prompts, interactive=True, visible=True)
        new_submit_btn = submit_btn
        main_instructions_comp = gr.Markdown(visible=True)
        step_3 = gr.Tab(visible=True)

    out_label = "Detected instances predicted with"
    if len(text.strip()) > 0:
        out_label += " text"
        if exemplars[0].size()[0] == 1:
            out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."        
        elif exemplars[0].size()[0] > 1:
            out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
        else:
            out_label += "."
    elif exemplars[0].size()[0] > 0:
        if exemplars[0].size()[0] == 1:
            out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
        else:
            out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
    else:
        out_label = "Nothing specified to detect."
 
    return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=boxes.shape[0]), new_submit_btn, gr.Tab(visible=True), step_3, state)

@spaces.GPU
def count_main(image, text, prompts, device):
    keywords = "" # do not handle this for now
    # Handle no prompt case.
    if prompts is None:
        prompts = {"image": image, "points": []}
    input_image, _ = transform(image, {"exemplars": torch.tensor([])})
    input_image = input_image.unsqueeze(0).to(device)
    exemplars = get_box_inputs(prompts["points"])
    
    input_image_exemplars, exemplars = transform(prompts["image"], {"exemplars": torch.tensor(exemplars)})
    input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
    exemplars = [exemplars["exemplars"].to(device)]
    
    with torch.no_grad():
        model_output = model(
                nested_tensor_from_tensor_list(input_image),
                nested_tensor_from_tensor_list(input_image_exemplars),
                exemplars,
                [torch.tensor([0]).to(device) for _ in range(len(input_image))],
                captions=[text + " ."] * len(input_image),
            )
    
    ind_to_filter = get_ind_to_filter(text, model_output["token"][0].word_ids, keywords)
    logits = model_output["pred_logits"].sigmoid()[0][:, ind_to_filter]
    boxes = model_output["pred_boxes"][0]
    if len(keywords.strip()) > 0:
        box_mask = (logits > CONF_THRESH).sum(dim=-1) == len(ind_to_filter)
    else:
        box_mask = logits.max(dim=-1).values > CONF_THRESH
    logits = logits[box_mask, :].cpu().numpy()
    boxes = boxes[box_mask, :].cpu().numpy()
    
    # Plot results.
    (w, h) = image.size
    det_map = np.zeros((h, w))
    det_map[(h * boxes[:, 1]).astype(int), (w * boxes[:, 0]).astype(int)] = 1
    det_map = ndimage.gaussian_filter(
        det_map, sigma=(w // 200, w // 200), order=0
    )
    plt.imshow(image)
    plt.imshow(det_map[None, :].transpose(1, 2, 0), 'jet', interpolation='none', alpha=0.7)
    plt.axis('off')
    img_buf = io.BytesIO()
    plt.savefig(img_buf, format='png', bbox_inches='tight')
    plt.close()

    output_img = Image.open(img_buf)

    out_label = "Detected instances predicted with"
    if len(text.strip()) > 0:
        out_label += " text"
        if exemplars[0].size()[0] == 1:
            out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplar."        
        elif exemplars[0].size()[0] > 1:
            out_label += " and " + str(exemplars[0].size()[0]) + " visual exemplars."
        else:
            out_label += "."
    elif exemplars[0].size()[0] > 0:
        if exemplars[0].size()[0] == 1:
            out_label += " " + str(exemplars[0].size()[0]) + " visual exemplar."
        else:
            out_label += " " + str(exemplars[0].size()[0]) + " visual exemplars."
    else:
        out_label = "Nothing specified to detect."
    
    return (gr.Image(output_img, visible=True, label=out_label, show_label=True), gr.Number(label="Predicted Count", visible=True, value=boxes.shape[0]))

def remove_label(image):
    return gr.Image(show_label=False)

def check_submit_btn(exemplar_image_prompts, state):
    if AppSteps.TEXT_AND_EXEMPLARS not in state or len(state) == 3:
        return gr.Button("Count", variant="primary", interactive=True)
    elif exemplar_image_prompts is None:
        return gr.Button("Count", variant="primary", interactive=False)
    elif len(get_box_inputs(exemplar_image_prompts["points"])) > 0:
        return gr.Button("Count", variant="primary", interactive=True)
    else:
        return gr.Button("Count", variant="primary", interactive=False)

exemplar_img_drawing_instructions_part_1 = '<p><strong>Congrats, you have counted the strawberries!</strong> You can also draw a box around the object you want to count. <strong>Click and drag the mouse on the image below to draw a box around one of the strawberries.</strong> You can click the back button in the top right of the image to delete the box and try again.<img src="file/button-legend.jpg" width="750"></p>'
exemplar_img_drawing_instructions_part_2 = '<p>The boxes you draw are called \"visual exemplars,\" image examples of what you want the model to count. You can add more boxes around more examples of strawberries in the image above to increase the accuracy of the predicted count. You can also use strawberries from a different image to specify the object to count by uploading or pasting a new image above and drawing boxes around strawberries in it.</p>'
instructions_main = """
# How to Use the App
As shown earlier, there are 3 ways to specify the object to count: (1) with text only, (2) with text and any number of boxes (i.e., "visual exemplars") around example objects, and (3) with visual exemplars only. What is being used is indicated in the top left of the output image. How to try each case is detailed below.
<ol>
  <li><strong>Text Only: </strong> Only provide text describing the object to count in the textbox titled "What would you like to count?" Delete all boxes drawn on the visual exemplar image.</li>
  <li><strong>Text + Visual Exemplars: </strong> Provide text describing the object to count in the textbox titled "What would you like to count?" and draw at least one box around an example object in the visual exemplar image.</li>
  <li><strong>Visual Exemplars Only: </strong> Remove all text in the textbox titled "What would you like to count?" and draw at least one box around an example object in the visual exemplar image.</li>
</ol>
## Click on the "App" tab at the top of the screen to exit the tutorial and start using the main app!
"""

with gr.Blocks(title="CountGD: Multi-Modal Open-World Counting", theme="soft", head="""<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=1">""") as demo:
    state = gr.State(value=[AppSteps.JUST_TEXT])
    device = gr.State(device)
    with gr.Tab("Tutorial"):
        with gr.Row():
            with gr.Column():
                with gr.Tab("Step 3", visible=False) as step_3:
                    main_instructions = gr.Markdown(instructions_main)
                with gr.Tab("Step 2", visible=False) as step_2:
                    gr.Markdown(exemplar_img_drawing_instructions_part_1)
                    exemplar_image = ImagePrompter(type='pil', label='Visual Exemplar Image', show_label=True, value={"image": "strawberry.jpg", "points": []}, interactive=True)
                    with gr.Accordion("Open for Further Information", open=False):
                        gr.Markdown(exemplar_img_drawing_instructions_part_2)
                with gr.Tab("Step 1", visible=True) as step_1:
                    input_image = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=False, width="30vw")
                    gr.Markdown('# Click "Count" to count the strawberries.')
                
            with gr.Column():
                with gr.Tab("Output Image"):
                    detected_instances = gr.Image(label="Detected Instances", show_label='True', interactive=False, visible=True, width="40vw")
                    
        with gr.Row():
            input_text = gr.Textbox(label="What would you like to count?", value="strawberry", interactive=True)
            pred_count = gr.Number(label="Predicted Count", visible=False)
        submit_btn = gr.Button("Count", variant="primary", interactive=True)
                
        submit_btn.click(fn=remove_label, inputs=[detected_instances], outputs=[detected_instances]).then(fn=count, inputs=[input_image, input_text, exemplar_image, state, device], outputs=[detected_instances, pred_count, submit_btn, step_2, step_3, state])
        exemplar_image.change(check_submit_btn, inputs=[exemplar_image, state], outputs=[submit_btn])
    with gr.Tab("App", visible=True) as main_app:
        
        gr.Markdown(
              """
              # <center>CountGD: Multi-Modal Open-World Counting
              <center><h3>Count objects with text, visual exemplars, or both together.</h3>
              <h3>Scroll down to try more examples</h3>
              <h3><a href='https://arxiv.org/abs/2407.04619' target='_blank' rel='noopener'>[paper]</a>
                <a href='https://github.com/niki-amini-naieni/CountGD/' target='_blank' rel='noopener'>[code]</a></h3>
              Limitation: this app does not support fine-grained counting based on attributes or visual grounding inputs yet. Note: if the exemplar and text conflict each other, both will be counted.</center>
              """
            )
            
        with gr.Row():
            with gr.Column():
              input_image_main = gr.Image(type='pil', label='Input Image', show_label='True', value="strawberry.jpg", interactive=True)
              input_text_main = gr.Textbox(label="What would you like to count?", placeholder="", value="strawberry")
              exemplar_image_main = ImagePrompter(type='pil', label='Visual Exemplar Image', show_label=True, value={"image": "strawberry.jpg", "points": []}, interactive=True)
            with gr.Column():
              detected_instances_main = gr.Image(label="Detected Instances", show_label='True', interactive=False)
              pred_count_main = gr.Number(label="Predicted Count")
              submit_btn_main = gr.Button("Count", variant="primary")
              clear_btn_main = gr.ClearButton(variant="secondary")
        gr.Examples(label="Examples: click on a row to load the example. Add visual exemplars by drawing boxes on the loaded \"Visual Exemplar Image.\"", examples=examples, inputs=[input_image_main, input_text_main, exemplar_image_main])
        submit_btn_main.click(fn=remove_label, inputs=[detected_instances_main], outputs=[detected_instances_main]).then(fn=count_main, inputs=[input_image_main, input_text_main, exemplar_image_main, device], outputs=[detected_instances_main, pred_count_main])
        clear_btn_main.add([input_image_main, input_text_main, exemplar_image_main, detected_instances_main, pred_count_main])
        

demo.queue().launch(allowed_paths=['back-icon.jpg', 'paste-icon.jpg', 'upload-icon.jpg', 'button-legend.jpg'])