Spaces:
Running
on
T4
Running
on
T4
Create test.py
Browse files
test.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
from __future__ import absolute_import
|
10 |
+
from __future__ import print_function
|
11 |
+
from __future__ import division
|
12 |
+
|
13 |
+
import time
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from torch.autograd import gradcheck
|
17 |
+
|
18 |
+
from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch
|
19 |
+
|
20 |
+
|
21 |
+
N, M, D = 1, 2, 2
|
22 |
+
Lq, L, P = 2, 2, 2
|
23 |
+
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
|
24 |
+
level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1]))
|
25 |
+
S = sum([(H*W).item() for H, W in shapes])
|
26 |
+
|
27 |
+
|
28 |
+
torch.manual_seed(3)
|
29 |
+
|
30 |
+
|
31 |
+
@torch.no_grad()
|
32 |
+
def check_forward_equal_with_pytorch_double():
|
33 |
+
value = torch.rand(N, S, M, D).cuda() * 0.01
|
34 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
35 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
36 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
37 |
+
im2col_step = 2
|
38 |
+
output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu()
|
39 |
+
output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu()
|
40 |
+
fwdok = torch.allclose(output_cuda, output_pytorch)
|
41 |
+
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
42 |
+
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
43 |
+
|
44 |
+
print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
45 |
+
|
46 |
+
|
47 |
+
@torch.no_grad()
|
48 |
+
def check_forward_equal_with_pytorch_float():
|
49 |
+
value = torch.rand(N, S, M, D).cuda() * 0.01
|
50 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
51 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
52 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
53 |
+
im2col_step = 2
|
54 |
+
output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu()
|
55 |
+
output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu()
|
56 |
+
fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3)
|
57 |
+
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
58 |
+
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
59 |
+
|
60 |
+
print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
61 |
+
|
62 |
+
|
63 |
+
def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True):
|
64 |
+
|
65 |
+
value = torch.rand(N, S, M, channels).cuda() * 0.01
|
66 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
67 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
68 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
69 |
+
im2col_step = 2
|
70 |
+
func = MSDeformAttnFunction.apply
|
71 |
+
|
72 |
+
value.requires_grad = grad_value
|
73 |
+
sampling_locations.requires_grad = grad_sampling_loc
|
74 |
+
attention_weights.requires_grad = grad_attn_weight
|
75 |
+
|
76 |
+
gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step))
|
77 |
+
|
78 |
+
print(f'* {gradok} check_gradient_numerical(D={channels})')
|
79 |
+
|
80 |
+
|
81 |
+
if __name__ == '__main__':
|
82 |
+
check_forward_equal_with_pytorch_double()
|
83 |
+
check_forward_equal_with_pytorch_float()
|
84 |
+
|
85 |
+
for channels in [30, 32, 64, 71]:
|
86 |
+
check_gradient_numerical(channels, True, True, True)
|