Spaces:
Sleeping
Sleeping
Removed print statements
Browse files
app.py
CHANGED
@@ -26,7 +26,6 @@ import shlex
|
|
26 |
import shutil
|
27 |
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), "tmp")
|
28 |
cwd = os.getcwd()
|
29 |
-
print("Current working directory:", cwd)
|
30 |
|
31 |
# Installing dependencies not in requirements.txt
|
32 |
subprocess.run(
|
@@ -75,7 +74,6 @@ def find_cuda():
|
|
75 |
return None
|
76 |
|
77 |
cuda_path = find_cuda()
|
78 |
-
print("Cuda path: " + str(cuda_path))
|
79 |
|
80 |
class AppSteps(Enum):
|
81 |
JUST_TEXT = 1
|
@@ -148,10 +146,8 @@ def get_args_parser():
|
|
148 |
|
149 |
def get_device():
|
150 |
if torch.cuda.is_available():
|
151 |
-
print("USING GPU")
|
152 |
return torch.device('cuda')
|
153 |
else:
|
154 |
-
print("USING CPU")
|
155 |
return torch.device('cpu')
|
156 |
|
157 |
# Get counting model.
|
@@ -271,11 +267,6 @@ def count(image, text, prompts, state, device):
|
|
271 |
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
272 |
exemplars = [exemplars["exemplars"].to(device)]
|
273 |
|
274 |
-
print("model device: " + str(next(model.parameters()).device))
|
275 |
-
print("input image device: " + str(input_image.device))
|
276 |
-
print("input image exemplars device: " + str(input_image_exemplars.device))
|
277 |
-
print("exemplars device: " + str(exemplars[0].device))
|
278 |
-
|
279 |
with torch.no_grad():
|
280 |
model_output = model(
|
281 |
nested_tensor_from_tensor_list(input_image),
|
|
|
26 |
import shutil
|
27 |
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), "tmp")
|
28 |
cwd = os.getcwd()
|
|
|
29 |
|
30 |
# Installing dependencies not in requirements.txt
|
31 |
subprocess.run(
|
|
|
74 |
return None
|
75 |
|
76 |
cuda_path = find_cuda()
|
|
|
77 |
|
78 |
class AppSteps(Enum):
|
79 |
JUST_TEXT = 1
|
|
|
146 |
|
147 |
def get_device():
|
148 |
if torch.cuda.is_available():
|
|
|
149 |
return torch.device('cuda')
|
150 |
else:
|
|
|
151 |
return torch.device('cpu')
|
152 |
|
153 |
# Get counting model.
|
|
|
267 |
input_image_exemplars = input_image_exemplars.unsqueeze(0).to(device)
|
268 |
exemplars = [exemplars["exemplars"].to(device)]
|
269 |
|
|
|
|
|
|
|
|
|
|
|
270 |
with torch.no_grad():
|
271 |
model_output = model(
|
272 |
nested_tensor_from_tensor_list(input_image),
|