Spaces:
Running
on
T4
Running
on
T4
Removed print statements
Browse files
models/GroundingDINO/groundingdino.py
CHANGED
@@ -397,7 +397,6 @@ class GroundingDINO(nn.Module):
|
|
397 |
dictionnaries containing the two above keys for each decoder layer.
|
398 |
"""
|
399 |
|
400 |
-
print("inside forward")
|
401 |
if targets is None:
|
402 |
captions = kw["captions"]
|
403 |
else:
|
@@ -409,7 +408,6 @@ class GroundingDINO(nn.Module):
|
|
409 |
samples.device
|
410 |
)
|
411 |
|
412 |
-
print("tokenized text")
|
413 |
one_hot_token = tokenized
|
414 |
|
415 |
(
|
@@ -445,7 +443,6 @@ class GroundingDINO(nn.Module):
|
|
445 |
|
446 |
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
|
447 |
|
448 |
-
print("got bert output")
|
449 |
encoded_text = self.feat_map(
|
450 |
bert_output["last_hidden_state"]
|
451 |
) # bs, 195, d_model
|
@@ -494,7 +491,6 @@ class GroundingDINO(nn.Module):
|
|
494 |
else:
|
495 |
exemplar_tokens = None
|
496 |
|
497 |
-
print("got visual exemplar tokens")
|
498 |
|
499 |
else:
|
500 |
features, poss = self.backbone(samples)
|
@@ -576,7 +572,6 @@ class GroundingDINO(nn.Module):
|
|
576 |
srcs = []
|
577 |
masks = []
|
578 |
for l, feat in enumerate(features):
|
579 |
-
print("l: " + str(l))
|
580 |
src, mask = feat.decompose()
|
581 |
srcs.append(self.input_proj[l](src))
|
582 |
masks.append(mask)
|
@@ -598,13 +593,10 @@ class GroundingDINO(nn.Module):
|
|
598 |
poss.append(pos_l)
|
599 |
|
600 |
input_query_bbox = input_query_label = attn_mask = dn_meta = None
|
601 |
-
print("passing info through transformer")
|
602 |
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
|
603 |
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
|
604 |
)
|
605 |
|
606 |
-
print("passed info through transformer")
|
607 |
-
|
608 |
# deformable-detr-like anchor update
|
609 |
outputs_coord_list = []
|
610 |
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
|
@@ -681,7 +673,6 @@ class GroundingDINO(nn.Module):
|
|
681 |
# outputs['one_hot'].shape
|
682 |
# torch.Size([4, 900, 256])
|
683 |
|
684 |
-
print("returning out")
|
685 |
return out
|
686 |
|
687 |
@torch.jit.unused
|
|
|
397 |
dictionnaries containing the two above keys for each decoder layer.
|
398 |
"""
|
399 |
|
|
|
400 |
if targets is None:
|
401 |
captions = kw["captions"]
|
402 |
else:
|
|
|
408 |
samples.device
|
409 |
)
|
410 |
|
|
|
411 |
one_hot_token = tokenized
|
412 |
|
413 |
(
|
|
|
443 |
|
444 |
bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
|
445 |
|
|
|
446 |
encoded_text = self.feat_map(
|
447 |
bert_output["last_hidden_state"]
|
448 |
) # bs, 195, d_model
|
|
|
491 |
else:
|
492 |
exemplar_tokens = None
|
493 |
|
|
|
494 |
|
495 |
else:
|
496 |
features, poss = self.backbone(samples)
|
|
|
572 |
srcs = []
|
573 |
masks = []
|
574 |
for l, feat in enumerate(features):
|
|
|
575 |
src, mask = feat.decompose()
|
576 |
srcs.append(self.input_proj[l](src))
|
577 |
masks.append(mask)
|
|
|
593 |
poss.append(pos_l)
|
594 |
|
595 |
input_query_bbox = input_query_label = attn_mask = dn_meta = None
|
|
|
596 |
hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
|
597 |
srcs, masks, input_query_bbox, poss, input_query_label, attn_mask, text_dict
|
598 |
)
|
599 |
|
|
|
|
|
600 |
# deformable-detr-like anchor update
|
601 |
outputs_coord_list = []
|
602 |
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
|
|
|
673 |
# outputs['one_hot'].shape
|
674 |
# torch.Size([4, 900, 256])
|
675 |
|
|
|
676 |
return out
|
677 |
|
678 |
@torch.jit.unused
|