import streamlit as st from torch.utils.data import Dataset, DataLoader import torch from sklearn.model_selection import train_test_split from transformers import get_linear_schedule_with_warmup, AdamW from torch.cuda.amp import autocast, GradScaler from transformers import DistilBertForSequenceClassification, DistilBertTokenizer, \ BigBirdPegasusForSequenceClassification, BigBirdTokenizer from transformers import pipeline from torch.utils.data import TensorDataset, random_split, DataLoader, RandomSampler, SequentialSampler from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score import streamlit as st import pandas as pd import json import ast from scipy import stats import numpy as np import time import datetime # def get_top95(y_predict, convert_target): lst_labels = [] tuple_arr = tuple((idx, val) for idx, val in enumerate(y_predict[0])) sort_y = sorted(tuple_arr, key=lambda x: x[1], reverse=True) cumsum = 0 for key, prob in sort_y: cumsum += prob print(prob) lst_labels.append(convert_target[str(key)]) if cumsum > 0.95: break return lst_labels # # model = MyModel() model = torch.load("distilbert-model1.pt", map_location='cpu').eval() # print(model) # model = DistilBertForSequenceClassification.from_pretrained("model/distilbert-model1.pt", local_files_only=True) # tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv') # model = BigBirdPegasusForSequenceClassification.from_pretrained('google/bigbird-pegasus-large-arxiv', # num_labels=8, # return_dict=False) def get_predict(text): tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased') # encoded_dict = tokenizer.encode_plus( # text, # document to encode. # add_special_tokens=True, # add '[CLS]' and '[SEP]' # max_length=512, # set max length # truncation=True, # truncate longer messages # pad_to_max_length=True, # add padding # return_attention_mask=True, # create attn. masks # return_tensors='pt' # return pytorch tensors # ) inputs = tokenizer(text, return_tensors="pt") outputs = model( input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], ) logits = outputs[0] y_predict = torch.nn.functional.softmax(logits).cpu().detach().numpy() file_path = "decode_target (1).json" with open(file_path, 'r') as json_file: decode_target = json.load(json_file) print(get_top95(y_predict, decode_target)) # # # # # # get_predict('''physics physics physics physics physics # physics physics physics physics''') # st.markdown("### Hello, world!") st.markdown("", unsafe_allow_html=True) # ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter text = st.text_area("TEXT HERE") # ^-- показать текстовое поле. В поле text лежит строка, которая находится там в данный момент # from transformers import pipeline # pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl") # raw_predictions = pipe(text) # тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost st.markdown("It's prediction: {get_predict(text)}")