import torch from PIL import Image import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import os from threading import Thread import pymupdf import docx from pptx import Presentation MODEL_LIST = ["nikravan/glm-4vq"] HF_TOKEN = os.environ.get("HF_TOKEN", None) MODEL_ID = MODEL_LIST[0] MODEL_NAME = "GLM-4vq" TITLE = "

3ML-bot

" DESCRIPTION = f"""

😊 A Multi-Modal Multi-Lingual(3ML) Chat.
🚀 MODEL NOW: {MODEL_NAME}

""" CSS = """ h1 { text-align: center; display: block; } """ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) def extract_text(path): return open(path, 'r').read() def extract_pdf(path): doc = pymupdf.open(path) text = "" for page in doc: text += page.get_text() return text def extract_docx(path): doc = docx.Document(path) data = [] for paragraph in doc.paragraphs: data.append(paragraph.text) content = '\n\n'.join(data) return content def extract_pptx(path): prs = Presentation(path) text = "" for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text"): text += shape.text + "\n" return text def mode_load(path): choice = "" file_type = path.split(".")[-1] print(file_type) if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]: if file_type.endswith("pdf"): content = extract_pdf(path) elif file_type.endswith("docx"): content = extract_docx(path) elif file_type.endswith("pptx"): content = extract_pptx(path) else: content = extract_text(path) choice = "doc" print(content[:100]) return choice, content[:5000] elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]: content = Image.open(path).convert('RGB') choice = "image" return choice, content else: raise gr.Error("Oops, unsupported files.") @spaces.GPU() def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float): if history.len()==0: model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ) print(f'message is - {message}') print(f'history is - {history}') conversation = [] prompt_files = [] if message["files"]: choice, contents = mode_load(message["files"][-1]) if choice == "image": conversation.append({"role": "user", "image": contents, "content": message['text']}) elif choice == "doc": format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text'] conversation.append({"role": "user", "content": format_msg}) else: if len(history) == 0: # raise gr.Error("Please upload an image first.") contents = None conversation.append({"role": "user", "content": message['text']}) else: # image = Image.open(history[0][0][0]) for prompt, answer in history: if answer is None: prompt_files.append(prompt[0]) conversation.extend([{"role": "user", "content": ""}, {"role": "assistant", "content": ""}]) else: conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) if len(prompt_files) > 0: choice, contents = mode_load(prompt_files[-1]) else: choice = "" conversation.append({"role": "user", "image": "", "content": message['text']}) if choice == "image": conversation.append({"role": "user", "image": contents, "content": message['text']}) elif choice == "doc": format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text'] conversation.append({"role": "user", "content": format_msg}) print(f"Conversation is -\n{conversation}") input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( max_length=max_length, streamer=streamer, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=penalty, eos_token_id=[151329, 151336, 151338], ) gen_kwargs = {**input_ids, **generate_kwargs} with torch.no_grad(): thread = Thread(target=model.generate, kwargs=gen_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer chatbot = gr.Chatbot( #rtl=True, ) chat_input = gr.MultimodalTextbox( interactive=True, placeholder="Enter message or upload a file ...", show_label=False, #rtl=True, ) EXAMPLES = [ [{"text": "Write a poem about spring season in French Language", }], [{"text": "what does this chart mean?", "files": ["sales.png"]}], [{"text": "¿Qué está escrito a mano en esta foto?", "files": ["receipt1.png"]}], [{"text": "در مورد این عکس توضیح بده و بگو این چه فصلی می تواند باشد", "files": ["nature.jpg"]}] ] with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo: gr.HTML(TITLE) gr.HTML(DESCRIPTION) gr.ChatInterface( fn=stream_chat, multimodal=True, textbox=chat_input, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False, ), gr.Slider( minimum=1024, maximum=8192, step=1, value=4096, label="Max Length", render=False, ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False, ), gr.Slider( minimum=1, maximum=20, step=1, value=10, label="top_k", render=False, ), gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Repetition penalty", render=False, ), ], ), gr.Examples(EXAMPLES, [chat_input]) if __name__ == "__main__": demo.queue(api_open=False).launch(show_api=False, share=False, )#server_name="0.0.0.0", )