File size: 4,100 Bytes
80d5294
ab382f0
 
 
 
 
 
 
 
 
 
 
e2429ca
ab382f0
 
 
 
3b4a08d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab382f0
 
 
2ae46d7
3b4a08d
09451be
 
 
 
 
 
 
 
3b4a08d
2ae46d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b4a08d
2ae46d7
 
3b4a08d
ab382f0
 
 
 
 
9d2effd
ab382f0
 
 
 
 
 
 
3b4a08d
80d5294
 
 
 
3b4a08d
f2fdba7
80d5294
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

import json
import subprocess
from threading import Thread

import torch
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

MODEL_ID = "nikravan/Marco_o1_q4"
CHAT_TEMPLATE = "ChatML"
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 16000

# Estableciendo valores directamente para las variables
COLOR = "blue"  # Color predeterminado de la interfaz
EMOJI = "πŸ€–"  # Emoji predeterminado para el modelo
DESCRIPTION = f"This is the {MODEL_NAME} model designed for testing thinking for general AI tasks."  # DescripciΓ³n predeterminada

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }, {
        "left": "\\begin{alignat}",
        "right": "\\end{alignat}",
        "display": True
    }, {
        "left": "\\begin{gather}",
        "right": "\\end{gather}",
        "display": True
    }, {
        "left": "\\begin{CD}",
        "right": "\\end{CD}",
        "display": True
    }, {
        "left": "\\[",
        "right": "\\]",
        "display": True
    }]


@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
    # Format history with a given chat template
    
    
    stop_tokens = ["<|endoftext|>", "<|im_end|>","|im_end|"]
    instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
    for user, assistant in history:
        instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
    instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
    
    print(instruction)
    
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
    input_ids, attention_mask = enc.input_ids, enc.attention_mask

    if input_ids.shape[1] > CONTEXT_LENGTH:
        input_ids = input_ids[:, -CONTEXT_LENGTH:]
        attention_mask = attention_mask[:, -CONTEXT_LENGTH:]

    generate_kwargs = dict(
        input_ids=input_ids.to(device),
        attention_mask=attention_mask.to(device),
        streamer=streamer,
        do_sample=True,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        top_p=top_p
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    outputs = []
    for new_token in streamer:
        outputs.append(new_token)
        if new_token in stop_tokens:
            break
        yield "".join(outputs)


# Load model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    device_map="auto",
    quantization_config=quantization_config,
    attn_implementation="flash_attention_2",
)

# Create Gradio interface
gr.ChatInterface(
    predict,
    title=EMOJI + " " + MODEL_NAME,
    description=DESCRIPTION,
    

     
    additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False),
    additional_inputs=[
        gr.Textbox("You are a code assistant.", label="System prompt"),
        gr.Slider(0, 1, 0.3, label="Temperature"),
        gr.Slider(128, 4096, 1024, label="Max new tokens"),
        gr.Slider(1, 80, 40, label="Top K sampling"),
        gr.Slider(0, 2, 1.1, label="Repetition penalty"),
        gr.Slider(0, 1, 0.95, label="Top P sampling"),
    ],
    theme=gr.themes.Soft(primary_hue=COLOR),
).queue().launch()