nikravan commited on
Commit
45ae9fe
β€’
1 Parent(s): 0b464a5
Files changed (1) hide show
  1. app.py +68 -68
app.py CHANGED
@@ -1,85 +1,85 @@
1
- # import gradio as gr
2
- # import requests
3
- # import os
4
 
5
- # ##Bloom
6
- # API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
7
 
8
- # HF_TOKEN = "Bloom_Token"
9
- # headers = {"Authorization": f"Bearer {HF_TOKEN}"}
10
 
11
 
12
- # def sql_generate(prompt, input_prompt_sql ):
13
 
14
- # print(f"*****Inside SQL_generate - Prompt is :{prompt}")
15
- # print(f"length of input_prompt_sql is {len(input_prompt_sql)}")
16
- # print(f"length of prompt is {len(prompt)}")
17
- # if len(prompt) == 0:
18
- # prompt = input_prompt_sql
19
 
20
- # json_ = {"inputs": prompt,
21
- # "parameters":
22
- # {
23
- # "top_p": 0.9,
24
- # "temperature": 1.1,
25
- # "max_new_tokens": 64,
26
- # "return_full_text": False,
27
- # },
28
- # "options":
29
- # {"use_cache": True,
30
- # "wait_for_model": True,
31
- # },}
32
- # response = requests.post(API_URL, headers=headers, json=json_)
33
- # print(f"Response is : {response}")
34
- # output = response.json()
35
- # print(f"output is : {output}")
36
- # output_tmp = output[0]['generated_text']
37
- # print(f"output_tmp is: {output_tmp}")
38
- # solution = output_tmp.split("\nQ:")[0]
39
- # print(f"Final response after splits is: {solution}")
40
- # if '\nOutput:' in solution:
41
- # final_solution = solution.split("\nOutput:")[0]
42
- # print(f"Response after removing output is: {final_solution}")
43
- # elif '\n\n' in solution:
44
- # final_solution = solution.split("\n\n")[0]
45
- # print(f"Response after removing new line entries is: {final_solution}")
46
- # else:
47
- # final_solution = solution
48
- # return final_solution
49
 
50
 
51
- # demo = gr.Blocks()
52
 
53
- # with demo:
54
- # gr.Markdown("<h1><center>Zero Shot SQL by Bloom</center></h1>")
55
- # gr.Markdown(
56
- # """[BigScienceW Bloom](https://twitter.com/BigscienceW) \n\n Large language models have demonstrated a capability of Zero-Shot SQL generation. Some might say β€” You can get good results out of LLMs if you know how to speak to them. This space is an attempt at inspecting this behavior/capability in the new HuggingFace BigScienceW [Bloom](https://huggingface.co/bigscience/bloom) model.\n\nThe Prompt length is limited at the API end right now, thus there is a certain limitation in testing Bloom's capability thoroughly.This Space might sometime fail due to inference queue being full and logs would end up showing error as *'queue full, try again later'*, in such cases please try again after few minutes. Please note that, longer prompts might not work as well and the Space could error out with Response code [500] or *'A very long prompt, temporarily not accepting these'* message in the logs. Still iterating over the app, might be able to improve it further soon.. \n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma) for Gradio EuroPython 2022 Demo."""
57
- # )
58
- # with gr.Row():
59
 
60
- # example_prompt = gr.Radio( [
61
- # "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: How many users signed up in the past month?\nPostgreSQL query: ",
62
- # "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: Create a query that displays empfname, emplname, deptid, deptname, location from employee table. Results should be in the ascending order based on the empfname and location.\nPostgreSQL query: ",
63
- # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: What is the total salary paid to all the employees?\nPostgreSQL query: ",
64
- # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: List names of all the employees whose name end with 'r'.\nPostgreSQL query: ",
65
- # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: What are the number of employees in each department?\nPostgreSQL query: ",
66
- # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all theemployees who have third character in their name as 't'.\nPostgreSQL query: ",
67
- # "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all the employees who are working under 'Peter'.\nPostgreSQL query: ", ], label= "Choose a sample Prompt")
68
 
69
- # #with gr.Column:
70
- # input_prompt_sql = gr.Textbox(label="Or Write text following the example pattern given below, to get SQL commands...", value="Instruction: Given an input question, respond with syntactically correct PostgreSQL. Use table called 'department'.\nInput: Select names of all the departments in their descending alphabetical order.\nPostgreSQL query: ", lines=6)
71
 
72
- # with gr.Row():
73
- # generated_txt = gr.Textbox(lines=3)
74
 
75
- # b1 = gr.Button("Generate SQL")
76
- # b1.click(sql_generate,inputs=[example_prompt, input_prompt_sql], outputs=generated_txt)
77
 
78
- # with gr.Row():
79
- # gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=europython2022_zero-shot-sql-by-bloom)")
80
 
81
- # demo.launch(enable_queue=True, debug=True)
82
 
83
- import gradio as gr
84
 
85
- gr.Interface.load("models/bigscience/bloom").launch()
 
1
+ import gradio as gr
2
+ import requests
3
+ import os
4
 
5
+ ##Bloom
6
+ API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
7
 
8
+ HF_TOKEN = "Bloom_Token"
9
+ headers = {"Authorization": f"Bearer {HF_TOKEN}"}
10
 
11
 
12
+ def sql_generate(prompt, input_prompt_sql ):
13
 
14
+ print(f"*****Inside SQL_generate - Prompt is :{prompt}")
15
+ print(f"length of input_prompt_sql is {len(input_prompt_sql)}")
16
+ print(f"length of prompt is {len(prompt)}")
17
+ if len(prompt) == 0:
18
+ prompt = input_prompt_sql
19
 
20
+ json_ = {"inputs": prompt,
21
+ "parameters":
22
+ {
23
+ "top_p": 0.9,
24
+ "temperature": 1.1,
25
+ "max_new_tokens": 64,
26
+ "return_full_text": False,
27
+ },
28
+ "options":
29
+ {"use_cache": True,
30
+ "wait_for_model": True,
31
+ },}
32
+ response = requests.post(API_URL, headers=headers, json=json_)
33
+ print(f"Response is : {response}")
34
+ output = response.json()
35
+ print(f"output is : {output}")
36
+ output_tmp = output[0]['generated_text']
37
+ print(f"output_tmp is: {output_tmp}")
38
+ solution = output_tmp.split("\nQ:")[0]
39
+ print(f"Final response after splits is: {solution}")
40
+ if '\nOutput:' in solution:
41
+ final_solution = solution.split("\nOutput:")[0]
42
+ print(f"Response after removing output is: {final_solution}")
43
+ elif '\n\n' in solution:
44
+ final_solution = solution.split("\n\n")[0]
45
+ print(f"Response after removing new line entries is: {final_solution}")
46
+ else:
47
+ final_solution = solution
48
+ return final_solution
49
 
50
 
51
+ demo = gr.Blocks()
52
 
53
+ with demo:
54
+ gr.Markdown("<h1><center>Zero Shot SQL by Bloom</center></h1>")
55
+ gr.Markdown(
56
+ """[BigScienceW Bloom](https://twitter.com/BigscienceW) \n\n Large language models have demonstrated a capability of Zero-Shot SQL generation. Some might say β€” You can get good results out of LLMs if you know how to speak to them. This space is an attempt at inspecting this behavior/capability in the new HuggingFace BigScienceW [Bloom](https://huggingface.co/bigscience/bloom) model.\n\nThe Prompt length is limited at the API end right now, thus there is a certain limitation in testing Bloom's capability thoroughly.This Space might sometime fail due to inference queue being full and logs would end up showing error as *'queue full, try again later'*, in such cases please try again after few minutes. Please note that, longer prompts might not work as well and the Space could error out with Response code [500] or *'A very long prompt, temporarily not accepting these'* message in the logs. Still iterating over the app, might be able to improve it further soon.. \n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma) for Gradio EuroPython 2022 Demo."""
57
+ )
58
+ with gr.Row():
59
 
60
+ example_prompt = gr.Radio( [
61
+ "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: How many users signed up in the past month?\nPostgreSQL query: ",
62
+ "Instruction: Given an input question, respond with syntactically correct PostgreSQL\nInput: Create a query that displays empfname, emplname, deptid, deptname, location from employee table. Results should be in the ascending order based on the empfname and location.\nPostgreSQL query: ",
63
+ "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: What is the total salary paid to all the employees?\nPostgreSQL query: ",
64
+ "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: List names of all the employees whose name end with 'r'.\nPostgreSQL query: ",
65
+ "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: What are the number of employees in each department?\nPostgreSQL query: ",
66
+ "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all theemployees who have third character in their name as 't'.\nPostgreSQL query: ",
67
+ "Instruction: Given an input question, respond with syntactically correct PostgreSQL. Only use table called 'employees'.\nInput: Select names of all the employees who are working under 'Peter'.\nPostgreSQL query: ", ], label= "Choose a sample Prompt")
68
 
69
+ #with gr.Column:
70
+ input_prompt_sql = gr.Textbox(label="Or Write text following the example pattern given below, to get SQL commands...", value="Instruction: Given an input question, respond with syntactically correct PostgreSQL. Use table called 'department'.\nInput: Select names of all the departments in their descending alphabetical order.\nPostgreSQL query: ", lines=6)
71
 
72
+ with gr.Row():
73
+ generated_txt = gr.Textbox(lines=3)
74
 
75
+ b1 = gr.Button("Generate SQL")
76
+ b1.click(sql_generate,inputs=[example_prompt, input_prompt_sql], outputs=generated_txt)
77
 
78
+ with gr.Row():
79
+ gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=europython2022_zero-shot-sql-by-bloom)")
80
 
81
+ demo.launch(enable_queue=True, debug=True)
82
 
83
+ # import gradio as gr
84
 
85
+ # gr.Interface.load("models/bigscience/bloom").launch()