File size: 18,602 Bytes
e1043c6
 
 
 
 
cf29d86
e1043c6
9c5e08b
e1043c6
 
 
 
 
cf29d86
 
e22e877
 
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8390a54
e1043c6
cf29d86
 
 
 
 
 
 
 
 
 
e1043c6
 
 
 
 
 
 
 
 
 
 
c00c6b5
 
cf29d86
 
 
52aa0e7
cf29d86
 
 
 
 
52aa0e7
cf29d86
 
 
 
52aa0e7
 
cf29d86
 
 
e1043c6
 
 
cf29d86
 
e1043c6
 
cf29d86
647c84c
433f9e3
e1043c6
cf29d86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1043c6
 
cf29d86
 
e1043c6
 
cf29d86
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf29d86
e1043c6
 
 
 
 
 
 
cf29d86
8390a54
e1043c6
 
 
 
 
cf29d86
 
 
e1043c6
 
 
cf29d86
 
 
 
 
 
 
 
 
 
 
 
 
 
8390a54
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8390a54
e1043c6
 
 
 
 
 
52aa0e7
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25db2bc
4cef6e6
 
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
 
9f0fcf1
4bed9ae
 
 
9f0fcf1
256b2ce
9f0fcf1
4bed9ae
 
e1043c6
 
c82fcd4
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8390a54
e1043c6
 
 
 
 
 
9c54061
e1043c6
 
 
 
 
4cef6e6
 
 
e1043c6
647c84c
 
 
e1043c6
 
647c84c
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
cf29d86
 
e1043c6
 
 
 
 
 
 
 
 
afc5436
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
ed09eac
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b3358
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63a8691
e1043c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import json
import re
from collections import defaultdict

import evaluate
import nltk
import numpy as np

from nervaluate import Evaluator
from sacrebleu.metrics import BLEU, CHRF
from sklearn.metrics import f1_score
from tqdm import tqdm
from transformers import AutoTokenizer
import rouge
import bert_score
import string


def load_json(file_path):
    with open(file_path, "r") as f:
        return json.load(f)


def get_micro_at_k(gold, pred, k):
    gold_set = set(gold)
    pred_set = set(pred[:k])
    return len(gold_set & pred_set), len(gold_set), len(pred_set)


def evaluate_bail(gold_data, pred_data):
    gold_labels = []
    pred_labels = []
    for id, label in gold_data.items():
        gold_labels.append(label)
        pred_labels.append(pred_data.get(id, 0))

    f1 = f1_score(gold_labels, pred_labels, average="macro")
    print("Macro-F1 on HLDC-all-districts test set:", f1)
    return {"mF1": f1*100}

def get_BLEU_score(ref_text_all, machine_text_all):
    sc_all = []
    for i in range(len(ref_text_all)):
        ref_text = ref_text_all[i]
        machine_text = machine_text_all[i]
        tok_ref_text = nltk.word_tokenize(ref_text)
        tok_machine_text = nltk.word_tokenize(machine_text)
        sc = nltk.translate.bleu_score.sentence_bleu([tok_ref_text], tok_machine_text, weights = (0.5,0.5))
        sc_all.append(sc)
    return sum(sc_all)/len(sc_all)

def evaluate_cjpe(gold_data, pred_data):
    # Evaluate prediction
    gold_labels = []
    pred_labels = []
    for id, label in gold_data["prediction"].items():
        gold_labels.append(label)
        pred_labels.append(pred_data["prediction"].get(id, 0))

    f1 = f1_score(gold_labels, pred_labels, average="macro")
    prediction_result = {"cjpe-eval": f1}
    print("Macro-F1 on ILDC test:", prediction_result)
    
    R = []
    B = []
    rl_evaluator = rouge.Rouge(metrics=['rouge-l'], max_n=2, limit_length=False, apply_avg=True)
    for x in range(1, 6):
        gold_explanations = []
        pred_explanations = []
        for k,v in gold_data['explanation'].items():
            gold_explanations.append(v[f'expert_{x}'])
            pred_explanations.append(pred_data['explanation'][k])
        print("Metrics for expert", x, "...", end=' ')
        rougex = rl_evaluator.get_scores(pred_explanations, gold_explanations)['rouge-l']['f']
        bleux = get_BLEU_score(gold_explanations, pred_explanations)
        R.append(rougex)
        B.append(bleux)
        print("Done.")
        
    
    rouge_score = sum(R)/len(R)
    bleu_score = sum(B)/len(B)

    explanation_result = {
        "cjpe-exp-eval": {
            "rouge": rouge_score,
            "bleu": bleu_score,
        }
    }
    print("Explanability for ILDC Expert:", explanation_result)
    #return {**prediction_result, **explanation_result}
    return {"cjpe-prediction": {"mF1": f1*100}, "cjpe-explanation": {"ROUGE-L": rouge_score*100, "BLEU": bleu_score*100}}

def span2bio(txt, roles):
    roles = sorted(roles, key = lambda x:x['start'])        
    roles_left = [r['start'] for r in roles]    
    
    ttxt = re.findall(r'[{}]|\w+'.format(string.punctuation), txt)
                            
    c = 0
    cr = -1
    prev = 'O'
    troles = []
    for tok in ttxt:
        if c >= len(txt):
            break
        
        while txt[c] == ' ':
            c += 1
        
        else:
            if c in roles_left: # Start of a new role
                ind = roles_left.index(c)
                cr = roles[ind]['end']
                prev = 'I-' + roles[ind]['label']
                troles.append('B-' + roles[ind]['label'])
            else:
                if c < cr: # Assign previous role
                    troles.append(prev)
                else: # Assign 'O'
                    troles.append('O')
            
            c += len(tok)
        
    if len(ttxt) != len(troles):
        troles += ['O'] * (len(ttxt) - len(troles))
        
    assert len(ttxt) == len(troles)
    return ttxt, troles

def evaluate_lner(gold_data, pred_data, text_data):
    with open("ner_labels.txt") as f:
        labels = f.read().strip().split("\n")

    results_per_fold = {}
    for fold in range(1, len(gold_data) + 1):
        gold = gold_data[f"fold_{fold}"]
        pred = pred_data[f"fold_{fold}"]
        text = text_data[f"fold_{fold}"]

        texts, gold_labels, pred_labels = [], [], []

        for id, gold_label in tqdm(gold.items()):
            txt = text[id]
            pred_label = pred.get(id, [])

            txt_seg, gold_bio = span2bio(txt, gold_label)
            _, pred_bio = span2bio(txt, pred_label)

            texts.append(txt_seg)
            gold_labels.append(gold_bio)
            pred_labels.append(pred_bio)

        evaluator = Evaluator(gold_labels, pred_labels, tags=labels, loader="list")

        results, results_per_tag, _, _ = evaluator.evaluate()

        f1_scores = [results_per_tag[l]["strict"]["f1"] for l in results_per_tag]
        avg_f1 = sum(f1_scores) / len(f1_scores)
        print(f"Strict Macro-F1 on Fold {fold}:", avg_f1)
        results_per_fold[f"fold_{fold}"] = avg_f1

    print("Strict macro-F1 on L-NER Dataset:", results_per_fold)
    return {"strict mF1": sum(results_per_fold.values())/len(results_per_fold)*100}


def evaluate_rr(gold_data, pred_data):
    all_gold_labels = []
    all_pred_labels = []
    with open("rr_label_vocab.json") as f:
        label_vocab = json.load(f)


    for id, gold_labels in gold_data.items():
        pred_labels = pred_data.get(id, ["None"] * len(gold_labels))
        for i in range(len(gold_labels)):
            g = gold_labels[i]
            p = pred_labels[i]
            if g not in label_vocab: continue
            for pp in p.split():
                if pp in label_vocab:
                    p = pp
                    break
            if p not in label_vocab: continue
            all_gold_labels.append([label_vocab[g]])
            all_pred_labels.append([label_vocab[p]])

    f1 = f1_score(all_gold_labels, all_pred_labels, average="macro")
    print(f"Macro-F1 on combined test set:", f1)
    return {"mF1": f1*100}


def evaluate_lsi(gold_data, pred_data):
    with open("lsi_label_vocab.json") as f:
        label_vocab = json.load(f)

    gold_matrix = np.zeros((len(gold_data), len(label_vocab)))
    pred_matrix = np.zeros((len(gold_data), len(label_vocab)))

    for i, (id, gold_labels) in enumerate(gold_data.items()):
        pred_labels = pred_data.get(id, [])

        for label in gold_labels:
            if label in label_vocab:
                gold_matrix[i, label_vocab[label]] = 1

        for label in pred_labels:
            if label in label_vocab:
                pred_matrix[i, label_vocab[label]] = 1

    f1 = f1_score(gold_matrix, pred_matrix, average="macro")
    print("Macro-F1 on ILSI test set:", f1)
    return {"mF1": f1*100}


def evaluate_pcr(gold_data, pred_data):
    f1_scores = []
    for k in range(1, 21):
        correct, gold_total, pred_total = 0, 0, 0
        for id, gold_candidates in tqdm(gold_data.items(), desc="pcr"):
            pred_candidates = pred_data.get(id, [])
            gold_candidates = [c for c in gold_candidates if c != id]
            pred_candidates = [c for c in pred_candidates if c != id]

            c, g, p = get_micro_at_k(gold_candidates, pred_candidates, k)
            correct += c
            gold_total += g
            pred_total += p

        precision = correct / pred_total if pred_total > 0 else 0
        recall = correct / gold_total if gold_total > 0 else 0
        f1 = (
            2 * precision * recall / (precision + recall)
            if precision + recall > 0
            else 0
        )
        f1_scores.append(f1)

        print(f"Micro-F1@{k} on IL-PCR test set:", f1)

    max_f1 = max(f1_scores)
    # index_max = f1_scores.index(max_f1) + 1
    return {"muF1@K": f"{max_f1*100:.2f}"} #@{index_max}"}


def evaluate_summ(gold_data, pred_data):
    gold_summaries = []
    pred_summaries = []

    for id, gold_summary in gold_data.items():
        if id in pred_data:
            gold_summary = re.sub(r"\s+", " ", gold_summary.replace("\n", " ")).strip()
            pred_summary = re.sub(r"\s+", " ", pred_data[id].replace("\n", " ")).strip()

            gold_summaries.append(gold_summary)
            pred_summaries.append(pred_summary)

    
    # rl_evaluator = rouge.Rouge(metrics=['rouge-l'], max_n=2, limit_length=False, apply_avg=True)
    # rl_scores = rl_evaluator.get_scores(pred_summaries, gold_summaries)
    # print("Rouge:", {k:v['f'] for k,v in rl_scores.items()}, flush=True)
    
    _, _, bs = bert_score.score(pred_summaries, gold_summaries, lang="en", verbose=True)
    print("BERTSCORE:", bs.mean().item())
    # return {'ROUGE-L': rl_scores['rouge-l']['f'] * 100, 'BERTSCORE': bs.mean().item() * 100}
    return {'ROUGE-L': '-', 'BERTSCORE': bs.mean().item() * 100}

def evaluate_lmt(gold_data, pred_data):
    tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert", use_fast=False)
    bleu = BLEU()
    chrfp = CHRF(word_order=2)
    gleu = evaluate.load("google_bleu")

    G = defaultdict(lambda: defaultdict(list))
    P = defaultdict(lambda: defaultdict(list))

    for dataset in gold_data:
        for id, gold_text in gold_data[dataset].items():
            lang = id.split("/")[1].strip()
            gold_tokens = " ".join(tokenizer.tokenize(gold_text))
            pred_tokens = " ".join(tokenizer.tokenize(pred_data[dataset][id]))
            G[dataset][lang].append(gold_tokens)
            P[dataset][lang].append(pred_tokens)

    bleu_scores, chrfpp_scores, gleu_scores = [], [], []

    for dataset in G:
        print("Dataset", dataset)
        dataset_bleu, dataset_chrfpp, dataset_gleu = [], [], []

        for lang in G[dataset]:
            gold = G[dataset][lang]
            pred = P[dataset][lang]

            bleu_score = bleu.corpus_score(pred, [gold]).score
            chrfpp_score = chrfp.corpus_score(pred, [gold]).score
            gleu_score = gleu.compute(predictions=pred, references=gold)["google_bleu"]

            dataset_bleu.append(bleu_score)
            dataset_chrfpp.append(chrfpp_score)
            dataset_gleu.append(gleu_score)

        bleu_scores.append(sum(dataset_bleu) / len(dataset_bleu))
        chrfpp_scores.append(sum(dataset_chrfpp) / len(dataset_chrfpp))
        gleu_scores.append(sum(dataset_gleu) / len(dataset_gleu))

    return {
        "BLEU": sum(bleu_scores) / len(bleu_scores),
        "GLEU": sum(gleu_scores) / len(gleu_scores) * 100,
        "chrF++": sum(chrfpp_scores) / len(chrfpp_scores),
    }


def create_output_json(evaluation_results):
    output = {
        "Method": "Final Testing Random",
        "Submitted By": "IL-TUR",
        "Github Link": "dummy submission",
        "L-NER": {"strict mF1": evaluation_results["lner"]["strict mF1"]},
        "RR": {"mF1": evaluation_results["rr"]["mF1"]},
        "CJPE": {
            "mF1": evaluation_results["cjpe-prediction"]["mF1"],
            "ROUGE-L": evaluation_results["cjpe-explanation"]["ROUGE-L"],
            "BLEU": evaluation_results["cjpe-explanation"]["BLEU"],
        },
        "BAIL": {"mF1": evaluation_results["bail"]["mF1"]},
        "LSI": {"mF1": evaluation_results["lsi"]["mF1"]},
        "PCR": {"muF1@K": evaluation_results["pcr"]["muF1@K"]},
        "SUMM": {
            "ROUGE-L": evaluation_results["summ"]["ROUGE-L"],
            "BERTSCORE": evaluation_results["summ"]["BERTSCORE"] #"-",  # Placeholder BERTSCORE
        },
        "L-MT": {
            "BLEU": evaluation_results["lmt"]["BLEU"],
            "GLEU": evaluation_results["lmt"]["GLEU"],
            "chrF++": evaluation_results["lmt"]["chrF++"],
        },
    }
    return [output]  # Wrap in a list to match the desired format


def main():
    # gold_data = load_json("IL_TUR_eval_gold.json")
    # pred_data = load_json("IL_TUR_eval_submission2.json")
    gold_data = load_json("submissions/baseline/IL_TUR_eval_gold.json")
    pred_data = load_json("submissions/baseline/IL_TUR_eval_submission_dummy.json")
    pred_data = gold_data
    evaluation_results = {}

    for task in pred_data.keys():
        print(f"Task: {task}")

        if task == "bail":
            evaluation_results[task] = evaluate_bail(gold_data[task], pred_data[task])
        elif task == "cjpe":
            nltk.download('punkt')
            evaluation_results.update(evaluate_cjpe(gold_data[task], pred_data[task]))
        elif task == "lner":
            text_data = load_json("lner-text.json")
            evaluation_results[task] = evaluate_lner(
                gold_data[task], pred_data[task], text_data
            )
        elif task == "rr":
            evaluation_results[task] = evaluate_rr(gold_data[task], pred_data[task])
        elif task == "lsi":
            evaluation_results[task] = evaluate_lsi(gold_data[task], pred_data[task])
        elif task == "pcr":
            evaluation_results[task] = evaluate_pcr(gold_data[task], pred_data[task])
        elif task == "summ":
            nltk.download('punkt')
            evaluation_results[task] = evaluate_summ(gold_data[task], pred_data[task])
        elif task == "lmt":
            evaluation_results[task] = evaluate_lmt(gold_data[task], pred_data[task])

    # convert the evaluation results to the required format
    for task, result in evaluation_results.items():
        if isinstance(result, dict):
            for subtask, subresult in result.items():
                if isinstance(subresult, dict):
                    for subsubtask, subsubresult in subresult.items():
                        evaluation_results[task][subtask][
                            subsubtask
                        ] = f"{subsubresult:.2f}"
                else:
                    if isinstance(subresult, str):
                        evaluation_results[task][subtask] = subresult
                    else:
                        evaluation_results[task][subtask] = f"{subresult:.2f}"
        else:
            if isinstance(result, str):
                evaluation_results[task] = result
            else:
                evaluation_results[task] = f"{result:.2f}"

    blank_scores = {
        "lner": {"strict mF1": "-"},
        "rr": {"mF1": "-"},
        "cjpe": {"mF1": "-", "ROUGE-L": "-", "BLEU": "-"},
        "bail": {"mF1": "-"},
        "lsi": {"mF1": "-"},
        "pcr": {"muF1@K": "-"},
        "summ": {"ROUGE-L": "-", "BERTSCORE": "-"},
        "lmt": {"BLEU": "-", "GLEU": "-", "chrF++": "-"},
    }

    print("--------------------------Evaluation Summary--------------------------")
    for task, result in evaluation_results.items():
        print(f"{task}: {result}")
    print("---------------------------------------------------------------------")

    # for tasks that were not present in the submission, add blank scores
    for task in gold_data.keys():
        if task not in pred_data:
            evaluation_results[task] = blank_scores[task]

    # Generate the output JSON
    output_json = create_output_json(evaluation_results)
    with open("evaluation_results.json", "w") as f:
        json.dump(output_json, f, indent=2)
    print("Evaluation results saved to evaluation_results.json")


def get_evaluation_scores(gold_data, submission_data):
    evaluation_results = {}

    for task in submission_data.keys():
        print(f"Task: {task}")

        if task == "bail":
            evaluation_results[task] = evaluate_bail(
                gold_data[task], submission_data[task]
            )
        elif task == "cjpe":
            nltk.download('punkt')
            evaluation_results.update(
                evaluate_cjpe(gold_data[task], submission_data[task])
            )
        elif task == "lner":
            text_data = load_json("lner-text.json")
            evaluation_results[task] = evaluate_lner(
                gold_data[task], submission_data[task], text_data
            )
        elif task == "rr":
            evaluation_results[task] = evaluate_rr(
                gold_data[task], submission_data[task]
            )
        elif task == "lsi":
            evaluation_results[task] = evaluate_lsi(
                gold_data[task], submission_data[task]
            )
        elif task == "pcr":
            evaluation_results[task] = evaluate_pcr(
                gold_data[task], submission_data[task]
            )
        elif task == "summ":
            nltk.download('punkt')
            evaluation_results[task] = evaluate_summ(
                gold_data[task], submission_data[task]
            )
        elif task == "lmt":
            evaluation_results[task] = evaluate_lmt(
                gold_data[task], submission_data[task]
            )

    # convert the evaluation results to the required format
    for task, result in evaluation_results.items():
        if isinstance(result, dict):
            for subtask, subresult in result.items():
                if isinstance(subresult, dict):
                    for subsubtask, subsubresult in subresult.items():
                        evaluation_results[task][subtask][
                            subsubtask
                        ] = f"{subsubresult:.2f}"
                else:
                    if isinstance(subresult, str):
                        evaluation_results[task][subtask] = subresult
                    else:
                        evaluation_results[task][subtask] = f"{subresult:.2f}"
        else:
            if isinstance(result, str):
                evaluation_results[task] = result
            else:
                evaluation_results[task] = f"{result:.2f}"

    blank_scores = {
        "lner": {"strict mF1": "-"},
        "rr": {"mF1": "-"},
        "cjpe": {"mF1": "-", "ROUGE-L": "-", "BLEU": "-"},
        "bail": {"mF1": "-"},
        "lsi": {"mF1": "-"},
        "pcr": {"muF1@K": "-"},
        "summ": {"ROUGE-L": "-", "BERTSCORE": "-"},
        "lmt": {"BLEU": "-", "GLEU": "-", "chrF++": "-"},
    }

    # for tasks that were not present in the submission, add blank scores
    for task in gold_data.keys():
        if task not in submission_data:
            evaluation_results[task] = blank_scores[task]

    print("--------------------------Evaluation Summary--------------------------")
    for task, result in evaluation_results.items():
        print(f"{task}: {result}")
    print("---------------------------------------------------------------------")
    output_json = create_output_json(evaluation_results)

    return output_json


if __name__ == "__main__":
    main()