Spaces:
Runtime error
Runtime error
File size: 20,973 Bytes
3da0952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"import torch\n",
"from onnx2pytorch import ConvertModel\n",
"from keras.models import load_model\n",
"import onnx"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Metal device set to: Apple M1\n",
"\n",
"systemMemory: 8.00 GB\n",
"maxCacheSize: 2.67 GB\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-01 19:38:26.414359: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built with NUMA support.\n",
"2024-02-01 19:38:26.414541: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>)\n"
]
}
],
"source": [
"\n",
"model1 = load_model('/Users/jarvis/pymycod/Deepfakes/DeepDetect/mesonet_trained.hdf5')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1/1 [==============================] - 0s 198ms/step\n",
"the image is realllll boii\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-02-01 14:03:47.045296: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz\n",
"2024-02-01 14:03:47.118034: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n"
]
}
],
"source": [
"import numpy as np\n",
"import keras.utils as image\n",
"\n",
"img_width, img_height = 256,256\n",
"img = image.load_img(f'/Users/jarvis/Downloads/im6.jpeg', target_size = (img_width, img_height))\n",
"img = image.img_to_array(img)\n",
"img = np.expand_dims(img, axis = 0)\n",
"ans = model1.predict(img)\n",
"if ans[0] ==0:\n",
" print(\"the image is fake afff\")\n",
"else:\n",
" print(\"the image is realllll boii\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"ename": "DecodeError",
"evalue": "Wrong wire type in tag.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mDecodeError\u001b[0m Traceback (most recent call last)",
"Input \u001b[0;32mIn [11]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m onnx_model \u001b[38;5;241m=\u001b[39m \u001b[43monnx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m/Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/onnx/__init__.py:208\u001b[0m, in \u001b[0;36mload_model\u001b[0;34m(f, format, load_external_data)\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload_model\u001b[39m(\n\u001b[1;32m 188\u001b[0m f: IO[\u001b[38;5;28mbytes\u001b[39m] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m|\u001b[39m os\u001b[38;5;241m.\u001b[39mPathLike,\n\u001b[1;32m 189\u001b[0m \u001b[38;5;28mformat\u001b[39m: _SupportedFormat \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 190\u001b[0m load_external_data: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 191\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ModelProto:\n\u001b[1;32m 192\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Loads a serialized ModelProto into memory.\u001b[39;00m\n\u001b[1;32m 193\u001b[0m \n\u001b[1;32m 194\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 206\u001b[0m \u001b[38;5;124;03m Loaded in-memory ModelProto.\u001b[39;00m\n\u001b[1;32m 207\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 208\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43m_get_serializer\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mformat\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdeserialize_proto\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_load_bytes\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mModelProto\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 210\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m load_external_data:\n\u001b[1;32m 211\u001b[0m model_filepath \u001b[38;5;241m=\u001b[39m _get_file_path(f)\n",
"File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/onnx/serialization.py:118\u001b[0m, in \u001b[0;36m_ProtobufSerializer.deserialize_proto\u001b[0;34m(self, serialized, proto)\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(serialized, \u001b[38;5;28mbytes\u001b[39m):\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\n\u001b[1;32m 116\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mParameter \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mserialized\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m must be bytes, but got type: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(serialized)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 117\u001b[0m )\n\u001b[0;32m--> 118\u001b[0m decoded \u001b[38;5;241m=\u001b[39m typing\u001b[38;5;241m.\u001b[39mcast(Optional[\u001b[38;5;28mint\u001b[39m], \u001b[43mproto\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mParseFromString\u001b[49m\u001b[43m(\u001b[49m\u001b[43mserialized\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 119\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m decoded \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m decoded \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28mlen\u001b[39m(serialized):\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m google\u001b[38;5;241m.\u001b[39mprotobuf\u001b[38;5;241m.\u001b[39mmessage\u001b[38;5;241m.\u001b[39mDecodeError(\n\u001b[1;32m 121\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mProtobuf decoding consumed too few bytes: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdecoded\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m out of \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlen\u001b[39m(serialized)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 122\u001b[0m )\n",
"File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/google/protobuf/message.py:202\u001b[0m, in \u001b[0;36mMessage.ParseFromString\u001b[0;34m(self, serialized)\u001b[0m\n\u001b[1;32m 194\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"Parse serialized protocol buffer data into this message.\u001b[39;00m\n\u001b[1;32m 195\u001b[0m \n\u001b[1;32m 196\u001b[0m \u001b[38;5;124;03mLike :func:`MergeFromString()`, except we clear the object first.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 199\u001b[0m \u001b[38;5;124;03m message.DecodeError if the input cannot be parsed.\u001b[39;00m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mClear()\n\u001b[0;32m--> 202\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mMergeFromString\u001b[49m\u001b[43m(\u001b[49m\u001b[43mserialized\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/google/protobuf/internal/python_message.py:1128\u001b[0m, in \u001b[0;36m_AddMergeFromStringMethod.<locals>.MergeFromString\u001b[0;34m(self, serialized)\u001b[0m\n\u001b[1;32m 1126\u001b[0m length \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(serialized)\n\u001b[1;32m 1127\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1128\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_InternalParse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mserialized\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlength\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;241m!=\u001b[39m length:\n\u001b[1;32m 1129\u001b[0m \u001b[38;5;66;03m# The only reason _InternalParse would return early is if it\u001b[39;00m\n\u001b[1;32m 1130\u001b[0m \u001b[38;5;66;03m# encountered an end-group tag.\u001b[39;00m\n\u001b[1;32m 1131\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m message_mod\u001b[38;5;241m.\u001b[39mDecodeError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnexpected end-group tag.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 1132\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mIndexError\u001b[39;00m, \u001b[38;5;167;01mTypeError\u001b[39;00m):\n\u001b[1;32m 1133\u001b[0m \u001b[38;5;66;03m# Now ord(buf[p:p+1]) == ord('') gets TypeError.\u001b[39;00m\n",
"File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/google/protobuf/internal/python_message.py:1181\u001b[0m, in \u001b[0;36m_AddMergeFromStringMethod.<locals>.InternalParse\u001b[0;34m(self, buffer, pos, end)\u001b[0m\n\u001b[1;32m 1179\u001b[0m \u001b[38;5;66;03m# TODO(jieluo): remove old_pos.\u001b[39;00m\n\u001b[1;32m 1180\u001b[0m old_pos \u001b[38;5;241m=\u001b[39m new_pos\n\u001b[0;32m-> 1181\u001b[0m (data, new_pos) \u001b[38;5;241m=\u001b[39m \u001b[43mdecoder\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_DecodeUnknownField\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1182\u001b[0m \u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnew_pos\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwire_type\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m 1183\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_pos \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 1184\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m pos\n",
"File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/google/protobuf/internal/decoder.py:965\u001b[0m, in \u001b[0;36m_DecodeUnknownField\u001b[0;34m(buffer, pos, wire_type)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 964\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 965\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m _DecodeError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mWrong wire type in tag.\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 967\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (data, pos)\n",
"\u001b[0;31mDecodeError\u001b[0m: Wrong wire type in tag."
]
}
],
"source": [
"\n",
"onnx_model = onnx.load('/Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx')\n",
"# pytorch_model = ConvertModel(onnx_model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def load_img_modality_model(args):\n",
" '''Loads image modality model.'''\n",
" rgb_encoder = pytorch_model\n",
"\n",
" ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))\n",
" rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)\n",
" rgb_encoder.eval()\n",
" return rgb_encoder\n",
"img_model = load_img_modality_model(args)\n",
"\n",
"def preprocess_img(face):\n",
" face = face / 255\n",
" face = cv2.resize(face, (256, 256))\n",
" # face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)\n",
" face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0) \n",
" return face_pt\n",
"def preprocess_video(input_video, n_frames = 3):\n",
" v_cap = cv2.VideoCapture(input_video)\n",
" v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
"\n",
" # Pick 'n_frames' evenly spaced frames to sample\n",
" if n_frames is None:\n",
" sample = np.arange(0, v_len)\n",
" else:\n",
" sample = np.linspace(0, v_len - 1, n_frames).astype(int)\n",
"\n",
" #Loop through frames.\n",
" frames = []\n",
" for j in range(v_len):\n",
" success = v_cap.grab()\n",
" if j in sample:\n",
" # Load frame\n",
" success, frame = v_cap.retrieve()\n",
" if not success:\n",
" continue\n",
" frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
" frame = preprocess_img(frame)\n",
" frames.append(frame)\n",
" v_cap.release()\n",
" return frames\n",
"\n",
"\n",
"def deepfakes_video_predict(input_video):\n",
" '''Perform inference on a video.'''\n",
" video_frames = preprocess_video(input_video)\n",
" real_faces_list = []\n",
" fake_faces_list = []\n",
"\n",
" for face in video_frames:\n",
" # face = preprocess_img(face)\n",
"\n",
" img_grads = img_model.forward(face)\n",
" img_grads = img_grads.cpu().detach().numpy()\n",
" img_grads_np = np.squeeze(img_grads)\n",
" real_faces_list.append(img_grads_np[0])\n",
" fake_faces_list.append(img_grads_np[1])\n",
"\n",
" real_faces_mean = np.mean(real_faces_list)\n",
" fake_faces_mean = np.mean(fake_faces_list)\n",
"\n",
" if real_faces_mean > 0.5:\n",
" preds = round(real_faces_mean * 100, 3)\n",
" text2 = f\"The video is REAL. \\nConfidence score is: {preds}%\"\n",
"\n",
" else:\n",
" preds = round(fake_faces_mean * 100, 3)\n",
" text2 = f\"The video is FAKE. \\nConfidence score is: {preds}%\"\n",
"\n",
" return text2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'Functional' object has no attribute 'forward'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"Input \u001b[0;32mIn [25]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mdeepfakes_video_predict\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/Users/jarvis/Documents/Ss/ras_df.mov\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"Input \u001b[0;32mIn [24]\u001b[0m, in \u001b[0;36mdeepfakes_video_predict\u001b[0;34m(input_video)\u001b[0m\n\u001b[1;32m 37\u001b[0m fake_faces_list \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m face \u001b[38;5;129;01min\u001b[39;00m video_frames:\n\u001b[1;32m 40\u001b[0m \u001b[38;5;66;03m# face = preprocess_img(face)\u001b[39;00m\n\u001b[0;32m---> 42\u001b[0m img_grads \u001b[38;5;241m=\u001b[39m \u001b[43mmodel1\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforward\u001b[49m(face)\n\u001b[1;32m 43\u001b[0m img_grads \u001b[38;5;241m=\u001b[39m img_grads\u001b[38;5;241m.\u001b[39mcpu()\u001b[38;5;241m.\u001b[39mdetach()\u001b[38;5;241m.\u001b[39mnumpy()\n\u001b[1;32m 44\u001b[0m img_grads_np \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39msqueeze(img_grads)\n",
"\u001b[0;31mAttributeError\u001b[0m: 'Functional' object has no attribute 'forward'"
]
}
],
"source": [
"deepfakes_video_predict(\"/Users/jarvis/Documents/Ss/ras_df.mov\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"ename": "ValidationError",
"evalue": "Unable to parse proto from file: /Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx. Please check if it is a valid protobuf file of proto. ",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)",
"Input \u001b[0;32mIn [10]\u001b[0m, in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01monnx\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m checker\n\u001b[0;32m----> 3\u001b[0m \u001b[43mchecker\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcheck_model\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/opt/anaconda3/envs/tensor/lib/python3.8/site-packages/onnx/checker.py:137\u001b[0m, in \u001b[0;36mcheck_model\u001b[0;34m(model, full_check, skip_opset_compatibility_check)\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[38;5;66;03m# If model is a path instead of ModelProto\u001b[39;00m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(model, (\u001b[38;5;28mstr\u001b[39m, os\u001b[38;5;241m.\u001b[39mPathLike)):\n\u001b[0;32m--> 137\u001b[0m \u001b[43mC\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcheck_model_path\u001b[49m\u001b[43m(\u001b[49m\u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfspath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfull_check\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mskip_opset_compatibility_check\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 139\u001b[0m protobuf_string \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 140\u001b[0m model \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(model, \u001b[38;5;28mbytes\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m model\u001b[38;5;241m.\u001b[39mSerializeToString()\n\u001b[1;32m 141\u001b[0m )\n",
"\u001b[0;31mValidationError\u001b[0m: Unable to parse proto from file: /Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx. Please check if it is a valid protobuf file of proto. "
]
}
],
"source": [
"from onnx import checker\n",
"\n",
"checker.check_model(\"/Users/jarvis/pymycod/Deepfakes/multimodal_deepfake_detection/checkpoints/efficientnet.onnx\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "tensor",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|