File size: 6,327 Bytes
4abab34
3da0952
 
 
 
 
4abab34
 
3da0952
 
 
 
4abab34
 
 
3da0952
 
 
4abab34
 
 
 
 
 
 
 
 
 
 
3da0952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4abab34
3da0952
 
 
 
 
 
4abab34
3da0952
 
 
 
 
 
 
 
4abab34
3da0952
4abab34
3da0952
 
4abab34
3da0952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4abab34
3da0952
 
 
4abab34
3da0952
 
 
4abab34
3da0952
 
 
 
 
 
 
 
4abab34
3da0952
 
 
4abab34
3da0952
 
 
4abab34
3da0952
 
4abab34
3da0952
 
 
4abab34
 
3da0952
 
 
 
4abab34
 
3da0952
 
 
 
4abab34
3da0952
 
 
 
 
 
 
 
 
4abab34
3da0952
 
 
 
4abab34
3da0952
 
 
 
 
 
4abab34
3da0952
 
4abab34
3da0952
 
 
4abab34
3da0952
 
 
4abab34
3da0952
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import cv2
import onnx
import torch
import argparse
import numpy as np
import torch.nn as nn
from models.TMC import ETMC
from models import image

from onnx2pytorch import ConvertModel

onnx_model = onnx.load('checkpoints/efficientnet.onnx')
pytorch_model = ConvertModel(onnx_model)

torch.manual_seed(42)


audio_args = {
    'nb_samp': 64600,
    'first_conv': 1024,
    'in_channels': 1,
    'filts': [20, [20, 20], [20, 128], [128, 128]],
    'blocks': [2, 4],
    'nb_fc_node': 1024,
    'gru_node': 1024,
    'nb_gru_layer': 3,
    'nb_classes': 2
}


def get_args(parser):
    parser.add_argument("--batch_size", type=int, default=8)
    parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
    parser.add_argument("--LOAD_SIZE", type=int, default=256)
    parser.add_argument("--FINE_SIZE", type=int, default=224)
    parser.add_argument("--dropout", type=float, default=0.2)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
    parser.add_argument("--hidden", nargs="*", type=int, default=[])
    parser.add_argument("--hidden_sz", type=int, default=768)
    parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
    parser.add_argument("--img_hidden_sz", type=int, default=1024)
    parser.add_argument("--include_bn", type=int, default=True)
    parser.add_argument("--lr", type=float, default=1e-4)
    parser.add_argument("--lr_factor", type=float, default=0.3)
    parser.add_argument("--lr_patience", type=int, default=10)
    parser.add_argument("--max_epochs", type=int, default=500)
    parser.add_argument("--n_workers", type=int, default=12)
    parser.add_argument("--name", type=str, default="MMDF")
    parser.add_argument("--num_image_embeds", type=int, default=1)
    parser.add_argument("--patience", type=int, default=20)
    parser.add_argument("--savedir", type=str, default="./savepath/")
    parser.add_argument("--seed", type=int, default=1)
    parser.add_argument("--n_classes", type=int, default=2)
    parser.add_argument("--annealing_epoch", type=int, default=10)
    parser.add_argument("--device", type=str, default='cpu')
    parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
    parser.add_argument("--freeze_image_encoder", type=bool, default = False)
    parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
    parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
    parser.add_argument("--augment_dataset", type = bool, default = True)

    for key, value in audio_args.items():
        parser.add_argument(f"--{key}", type=type(value), default=value)

def load_img_modality_model(args):
    rgb_encoder = pytorch_model
    ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
    rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
    rgb_encoder.eval()
    return rgb_encoder

def load_spec_modality_model(args):
    spec_encoder = image.RawNet(args)
    ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
    spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
    spec_encoder.eval()
    return spec_encoder

parser = argparse.ArgumentParser(description="Inference models")
get_args(parser)
args, remaining_args = parser.parse_known_args()
assert remaining_args == [], remaining_args

spec_model = load_spec_modality_model(args)

img_model = load_img_modality_model(args)


def preprocess_img(face):
    face = face / 255
    face = cv2.resize(face, (256, 256))
    face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0) 
    return face_pt

def preprocess_audio(audio_file):
    audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
    return audio_pt

def df_spec_pred(input_audio):
    x, _ = input_audio
    audio = preprocess_audio(x)
    spec_grads = spec_model.forward(audio)
    spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
    max_value = np.argmax(spec_grads_inv)

    if max_value > 0.5:
        preds = round(100 - (max_value*100), 3)
        text2 = f"The audio is REAL."

    else:
        preds = round(max_value*100, 3)
        text2 = f"The audio is FAKE."

    return text2

def df_img_pred(input_image):
    face = preprocess_img(input_image)
    print(f"Face shape is: {face.shape}")
    img_grads = img_model.forward(face)
    img_grads = img_grads.cpu().detach().numpy()
    img_grads_np = np.squeeze(img_grads)

    if img_grads_np[0] > 0.5:
        preds = round(img_grads_np[0] * 100, 3)
        text2 = f"The image is REAL. \nConfidence score is: {preds}"

    else:
        preds = round(img_grads_np[1] * 100, 3)
        text2 = f"The image is FAKE. \nConfidence score is: {preds}"

    return text2


def preprocess_video(input_video, n_frames = 3):
    v_cap = cv2.VideoCapture(input_video)
    v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # Pick 'n_frames' evenly spaced frames to sample
    if n_frames is None:
        sample = np.arange(0, v_len)
    else:
        sample = np.linspace(0, v_len - 1, n_frames).astype(int)

    #Loop through frames.
    frames = []
    for j in range(v_len):
        success = v_cap.grab()
        if j in sample:
            # Load frame
            success, frame = v_cap.retrieve()
            if not success:
                continue
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frame = preprocess_img(frame)
            frames.append(frame)
    v_cap.release()
    return frames


def df_video_pred(input_video):
    video_frames = preprocess_video(input_video)
    real_faces_list = []
    fake_faces_list = []

    for face in video_frames:
        img_grads = img_model.forward(face)
        img_grads = img_grads.cpu().detach().numpy()
        img_grads_np = np.squeeze(img_grads)
        real_faces_list.append(img_grads_np[0])
        fake_faces_list.append(img_grads_np[1])

    real_faces_mean = np.mean(real_faces_list)
    fake_faces_mean = np.mean(fake_faces_list)

    if real_faces_mean > 0.5:
        preds = round(real_faces_mean * 100, 3)
        text2 = f"The video is REAL. \nConfidence score is: {preds}%"

    else:
        preds = round(fake_faces_mean * 100, 3)
        text2 = f"The video is FAKE. \nConfidence score is: {preds}%"

    return text2