# streamlit_app.py import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load the model and tokenizer @st.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained("meta-math/MetaMath-Mistral-7B") model = AutoModelForCausalLM.from_pretrained("meta-math/MetaMath-Mistral-7B") return tokenizer, model tokenizer, model = load_model() # Streamlit app layout st.title("MetaMath Mistral 7B Question-Answering") st.write("Ask any question, and the model will generate an answer:") # Input from user question = st.text_input("Enter your question:") if st.button("Generate Answer"): if question.strip(): # Tokenize input inputs = tokenizer.encode(question, return_tensors="pt") # Generate response with torch.no_grad(): outputs = model.generate(inputs, max_length=200, num_return_sequences=1) # Decode and display the output answer = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write("**Answer:**", answer) else: st.write("Please enter a question to get an answer.")