Spaces:
Runtime error
Runtime error
File size: 2,003 Bytes
f6a98e4 a997f34 f6a98e4 d35379a 8f558df f6a98e4 4dd72e8 39761c3 4dd72e8 39761c3 4dd72e8 39761c3 4dd72e8 39761c3 97313a7 723de5f 97313a7 723de5f 97313a7 723de5f f6a98e4 723de5f c462fef 39761c3 c462fef 39761c3 c462fef 39761c3 c462fef 39761c3 c462fef f6a98e4 723de5f ae0aef7 8f558df 723de5f f6a98e4 723de5f f6a98e4 723de5f 97313a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import spaces
import os
import time
import torch
import gradio as gr
from threading import Thread
from PIL import Image
# Install required packages
import subprocess
subprocess.run('pip install --upgrade transformers', shell=True)
subprocess.run('pip install accelerate', shell=True)
from transformers import AutoModelForCausalLM, AutoTokenizer
# Model and tokenizer initialization
model_name = "Qwen/QVQ-72B-Preview"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.float16
)
# Footer
footer = """
<div style="text-align: center; margin-top: 20px;">
<p>Powered by QVQ-72B Model</p>
</div>
"""
# Vision model function
@spaces.GPU()
def process_image(image, text_input=None):
try:
# Convert image to PIL format
image = Image.fromarray(image).convert("RGB")
# Prepare prompt
if text_input:
prompt = f"<image>Please describe this image and answer: {text_input}</image>"
else:
prompt = "<image>Please describe this image in detail.</image>"
# Generate response
response = model.chat(tokenizer, prompt, history=[], images=image)
return response
except Exception as e:
return f"Error processing image: {str(e)}"
# CSS styling
css = """
footer {
visibility: hidden;
}
"""
# Gradio interface
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
input_img = gr.Image(label="Input Image")
with gr.Row():
text_input = gr.Textbox(label="Question (Optional)")
with gr.Row():
submit_btn = gr.Button(value="Submit")
with gr.Row():
output_text = gr.Textbox(label="Response")
submit_btn.click(process_image, [input_img, text_input], [output_text])
gr.HTML(footer)
# Launch the app
demo.launch(debug=True) |