import spaces
import os
import time
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
import gradio as gr
from threading import Thread
from PIL import Image
# Model and processor initialization
processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview")
model = AutoModelForImageTextToText.from_pretrained("Qwen/QVQ-72B-Preview").cuda().eval()
# Footer
footer = """
"""
# Vision model function
@spaces.GPU()
def process_image(image, text_input=None):
# Convert image to PIL format
image = Image.fromarray(image).convert("RGB")
# Prepare inputs
if text_input:
inputs = processor(text=text_input, images=image, return_tensors="pt").to("cuda:0")
else:
inputs = processor(images=image, return_tensors="pt").to("cuda:0")
# Generate output
outputs = model.generate(**inputs, max_new_tokens=1000)
# Decode response
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
return response
# CSS styling
css = """
footer {
visibility: hidden;
}
"""
# Gradio interface
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Row():
input_img = gr.Image(label="Input Image")
with gr.Row():
text_input = gr.Textbox(label="Question (Optional)")
with gr.Row():
submit_btn = gr.Button(value="Submit")
with gr.Row():
output_text = gr.Textbox(label="Response")
submit_btn.click(process_image, [input_img, text_input], [output_text])
gr.HTML(footer)
# Launch the app
demo.launch(debug=True)