nkanungo commited on
Commit
4581574
·
1 Parent(s): cc1a589

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +127 -0
  2. nano_gpt_inferencing.py +197 -0
  3. nano_gpt_model.pth +3 -0
  4. requirements.txt +2 -0
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # In[2]:
5
+
6
+
7
+ import gradio as gr
8
+ import torch
9
+ from torch import nn
10
+ from torch.nn import functional as F
11
+ from nano_gpt_inferencing import generate_paragraph
12
+
13
+
14
+ HTML_TEMPLATE = """
15
+ <style>
16
+ body {
17
+ font-family: 'Arial', sans-serif;
18
+ background: #3498db; /* Blue background color */
19
+ margin: 0;
20
+ padding: 0;
21
+ }
22
+
23
+ #app-header {
24
+ text-align: center;
25
+ background: rgba(255, 255, 255, 0.7); /* Semi-transparent white */
26
+ padding: 20px;
27
+ border-radius: 10px;
28
+ box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
29
+ position: relative; /* To position the artifacts */
30
+ margin: 30px auto;
31
+ max-width: 600px;
32
+ }
33
+
34
+ #app-header h1 {
35
+ color: #FF0000;
36
+ font-size: 2.5em;
37
+ margin-bottom: 10px;
38
+ }
39
+
40
+ .header-images {
41
+ display: flex;
42
+ justify-content: center;
43
+ align-items: center;
44
+ margin: 20px 0;
45
+ }
46
+
47
+ .header-image {
48
+ width: 100px;
49
+ height: 100px;
50
+ margin: 0 10px;
51
+ background: #fff;
52
+ border-radius: 50%;
53
+ display: flex;
54
+ justify-content: center;
55
+ align-items: center;
56
+ box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2);
57
+ }
58
+
59
+ .header-image img {
60
+ max-width: 80px;
61
+ max-height: 80px;
62
+ border-radius: 50%;
63
+ }
64
+
65
+ .concept-description {
66
+ position: absolute;
67
+ bottom: -30px;
68
+ left: 50%;
69
+ transform: translateX(-50%);
70
+ background-color: #4CAF50;
71
+ color: white;
72
+ padding: 5px 10px;
73
+ border-radius: 5px;
74
+ opacity: 0;
75
+ transition: opacity 0.3s;
76
+ }
77
+
78
+ .concept:hover .concept-description {
79
+ opacity: 1;
80
+ }
81
+ </style>
82
+ </head>
83
+ <body>
84
+ <div id="app-header">
85
+ <!-- Header Images -->
86
+ <div class="header-images">
87
+ <div class="header-image">
88
+ <img src="https://github.com/nkanungo/ERAS20/blob/main/images/ss1.jpg?raw=true" alt="Image 1">
89
+ </div>
90
+ <div class="header-image">
91
+ <img src="https://github.com/nkanungo/ERAS20/blob/main/images/ss1.jpg?raw=true" alt="Image 2">
92
+ </div>
93
+ </div>
94
+ <!-- Content -->
95
+ <h1>Paragraph Auto Completion like Shakespeare </h1>
96
+ <p>Generate dialogue using the intellignece from Shakespeare Dataset .</p>
97
+ <p>Model: GPT, Dataset: Tiny Shakespeare, Token limit: User input ,Input Text: User input.</p>
98
+ </div>
99
+ """
100
+ with gr.Blocks(theme=gr.themes.Glass()) as interface:
101
+ gr.HTML(value=HTML_TEMPLATE, show_label=False)
102
+
103
+ with gr.Row(scale=1):
104
+
105
+
106
+ inputs = [
107
+ gr.Textbox(label="Input Text Prompt"),
108
+ gr.Textbox(label="Token Limit")
109
+ ]
110
+ outputs = gr.Textbox(
111
+ label="Generated Paragraph"
112
+ )
113
+
114
+
115
+ with gr.Column(scale=1):
116
+ button = gr.Button("Generate")
117
+ button.click(generate_paragraph, inputs=inputs, outputs=outputs)
118
+
119
+ if __name__ == "__main__":
120
+ interface.launch(enable_queue=True)
121
+
122
+
123
+ # In[ ]:
124
+
125
+
126
+
127
+
nano_gpt_inferencing.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from torch.nn import functional as F
7
+
8
+ # hyperparameters
9
+ batch_size = 16 # how many independent sequences will we process in parallel?
10
+ block_size = 64 # what is the maximum context length for predictions?
11
+ max_iters = 20000
12
+ eval_interval = 100
13
+ learning_rate = 1e-3
14
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
15
+ eval_iters = 200
16
+ n_embd = 64
17
+ n_head = 8
18
+ n_layer = 8
19
+ dropout = 0.2
20
+ # ------------
21
+
22
+ torch.manual_seed(1337)
23
+
24
+ # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
25
+ with open('input.txt', 'r', encoding='utf-8') as f:
26
+ text = f.read()
27
+
28
+ # here are all the unique characters that occur in this text
29
+ chars = sorted(list(set(text)))
30
+ vocab_size = len(chars)
31
+ # create a mapping from characters to integers
32
+ stoi = { ch:i for i,ch in enumerate(chars) }
33
+ itos = { i:ch for i,ch in enumerate(chars) }
34
+ encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
35
+ decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
36
+
37
+ # Train and test splits
38
+ data = torch.tensor(encode(text), dtype=torch.long)
39
+ n = int(0.9*len(data)) # first 90% will be train, rest val
40
+ train_data = data[:n]
41
+ val_data = data[n:]
42
+
43
+ # data loading
44
+ def get_batch(split):
45
+ # generate a small batch of data of inputs x and targets y
46
+ data = train_data if split == 'train' else val_data
47
+ ix = torch.randint(len(data) - block_size, (batch_size,))
48
+ x = torch.stack([data[i:i+block_size] for i in ix])
49
+ y = torch.stack([data[i+1:i+block_size+1] for i in ix])
50
+ x, y = x.to(device), y.to(device)
51
+ return x, y
52
+
53
+ @torch.no_grad()
54
+ def estimate_loss():
55
+ out = {}
56
+ model.eval()
57
+ for split in ['train', 'val']:
58
+ losses = torch.zeros(eval_iters)
59
+ for k in range(eval_iters):
60
+ X, Y = get_batch(split)
61
+ logits, loss = model(X, Y)
62
+ losses[k] = loss.item()
63
+ out[split] = losses.mean()
64
+ model.train()
65
+ return out
66
+
67
+ class Head(nn.Module):
68
+ """ one head of self-attention """
69
+
70
+ def __init__(self, head_size):
71
+ super().__init__()
72
+ self.key = nn.Linear(n_embd, head_size, bias=False)
73
+ self.query = nn.Linear(n_embd, head_size, bias=False)
74
+ self.value = nn.Linear(n_embd, head_size, bias=False)
75
+ self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
76
+
77
+ self.dropout = nn.Dropout(dropout)
78
+
79
+ def forward(self, x):
80
+ B,T,C = x.shape
81
+ k = self.key(x) # (B,T,C)
82
+ q = self.query(x) # (B,T,C)
83
+ # compute attention scores ("affinities")
84
+ wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
85
+ wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
86
+ wei = F.softmax(wei, dim=-1) # (B, T, T)
87
+ wei = self.dropout(wei)
88
+ # perform the weighted aggregation of the values
89
+ v = self.value(x) # (B,T,C)
90
+ out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
91
+ return out
92
+
93
+ class MultiHeadAttention(nn.Module):
94
+ """ multiple heads of self-attention in parallel """
95
+
96
+ def __init__(self, num_heads, head_size):
97
+ super().__init__()
98
+ self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
99
+ self.proj = nn.Linear(n_embd, n_embd)
100
+ self.dropout = nn.Dropout(dropout)
101
+
102
+ def forward(self, x):
103
+ out = torch.cat([h(x) for h in self.heads], dim=-1)
104
+ out = self.dropout(self.proj(out))
105
+ return out
106
+
107
+ class FeedFoward(nn.Module):
108
+ """ a simple linear layer followed by a non-linearity """
109
+
110
+ def __init__(self, n_embd):
111
+ super().__init__()
112
+ self.net = nn.Sequential(
113
+ nn.Linear(n_embd, 4 * n_embd),
114
+ nn.ReLU(),
115
+ nn.Linear(4 * n_embd, n_embd),
116
+ nn.Dropout(dropout),
117
+ )
118
+
119
+ def forward(self, x):
120
+ return self.net(x)
121
+
122
+ class Block(nn.Module):
123
+ """ Transformer block: communication followed by computation """
124
+
125
+ def __init__(self, n_embd, n_head):
126
+ # n_embd: embedding dimension, n_head: the number of heads we'd like
127
+ super().__init__()
128
+ head_size = n_embd // n_head
129
+ self.sa = MultiHeadAttention(n_head, head_size)
130
+ self.ffwd = FeedFoward(n_embd)
131
+ self.ln1 = nn.LayerNorm(n_embd)
132
+ self.ln2 = nn.LayerNorm(n_embd)
133
+
134
+ def forward(self, x):
135
+ x = x + self.sa(self.ln1(x))
136
+ x = x + self.ffwd(self.ln2(x))
137
+ return x
138
+
139
+ # super simple bigram model
140
+ class BigramLanguageModel(nn.Module):
141
+
142
+ def __init__(self):
143
+ super().__init__()
144
+ # each token directly reads off the logits for the next token from a lookup table
145
+ self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
146
+ self.position_embedding_table = nn.Embedding(block_size, n_embd)
147
+ self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
148
+ self.ln_f = nn.LayerNorm(n_embd) # final layer norm
149
+ self.lm_head = nn.Linear(n_embd, vocab_size)
150
+
151
+ def forward(self, idx, targets=None):
152
+ B, T = idx.shape
153
+
154
+ # idx and targets are both (B,T) tensor of integers
155
+ tok_emb = self.token_embedding_table(idx) # (B,T,C)
156
+ pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
157
+ x = tok_emb + pos_emb # (B,T,C)
158
+ x = self.blocks(x) # (B,T,C)
159
+ x = self.ln_f(x) # (B,T,C)
160
+ logits = self.lm_head(x) # (B,T,vocab_size)
161
+
162
+ if targets is None:
163
+ loss = None
164
+ else:
165
+ B, T, C = logits.shape
166
+ logits = logits.view(B*T, C)
167
+ targets = targets.view(B*T)
168
+ loss = F.cross_entropy(logits, targets)
169
+
170
+ return logits, loss
171
+
172
+ def generate(self, idx, max_new_tokens):
173
+ # idx is (B, T) array of indices in the current context
174
+ for _ in range(max_new_tokens):
175
+ # crop idx to the last block_size tokens
176
+ idx_cond = idx[:, -block_size:]
177
+ # get the predictions
178
+ logits, loss = self(idx_cond)
179
+ # focus only on the last time step
180
+ logits = logits[:, -1, :] # becomes (B, C)
181
+ # apply softmax to get probabilities
182
+ probs = F.softmax(logits, dim=-1) # (B, C)
183
+ # sample from the distribution
184
+ idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
185
+ # append sampled index to the running sequence
186
+ idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
187
+ return idx
188
+
189
+
190
+ def generate_paragraph(initial_text,max_token):
191
+ model = BigramLanguageModel()
192
+ model.load_state_dict(torch.load('nano_gpt_model.pth'))
193
+ final_model = model.to(device)
194
+ encoded_text= encode(initial_text)
195
+ encoded_text_tensor = torch.tensor(encoded_text).view(1, -1)
196
+ return decode(final_model.generate(encoded_text_tensor, max_new_tokens=int(max_token))[0].tolist())
197
+
nano_gpt_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2007cc588e3cb9df071ee89a38153c9f38857f7da86c436cda60d5ce3c6d09d7
3
+ size 2793298
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ gradio
2
+ torch