Spaces:
Runtime error
Runtime error
nkasmanoff
commited on
Commit
•
06758b6
1
Parent(s):
0657cdd
Create dataset_recommender.py
Browse files- dataset_recommender.py +36 -0
dataset_recommender.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import RetrievalQA
|
2 |
+
from langchain.llms import OpenAI
|
3 |
+
from langchain.embeddings import OpenAIEmbeddings
|
4 |
+
from vectorize_dataset import load_descriptions_data, create_db
|
5 |
+
from helpers import clean_up_tags, get_dataset_metadata
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
class DatasetRecommender:
|
10 |
+
def __init__(self, llm_backbone = OpenAI(), embeddings_backbone = OpenAIEmbeddings()):
|
11 |
+
self.llm_backbone = llm_backbone
|
12 |
+
self.embeddings_backbone = embeddings_backbone
|
13 |
+
self.hf_df = load_descriptions_data()
|
14 |
+
self.db = create_db(self.hf_df, self.embeddings_backbone)
|
15 |
+
self.datasets_url_base = "https://huggingface.co/datasets/"
|
16 |
+
# expose this index in a retriever interface
|
17 |
+
self.retriever = self.db.as_retriever(search_type="similarity", search_kwargs={"k":2})
|
18 |
+
# create a chain to answer questions
|
19 |
+
self.qa = RetrievalQA.from_chain_type(
|
20 |
+
llm=self.llm_backbone, chain_type="stuff", retriever=self.retriever, return_source_documents=True)
|
21 |
+
|
22 |
+
def recommend_based_on_text(self, query):
|
23 |
+
result = self.qa({"query": query})
|
24 |
+
response_text = result['result']
|
25 |
+
source_documents = result['source_documents']
|
26 |
+
linked_datasets = [f"{self.datasets_url_base}{x.metadata['id']}" for x in source_documents]
|
27 |
+
return {'message': response_text, 'datasets': linked_datasets}
|
28 |
+
|
29 |
+
def get_similar_datasets(self, query_url):
|
30 |
+
retrieved_metadata = get_dataset_metadata(query_url)
|
31 |
+
if 'description' not in retrieved_metadata:
|
32 |
+
return {'error': 'no description found for this dataset.'}
|
33 |
+
cleaned_description = retrieved_metadata['description'] + clean_up_tags(retrieved_metadata['tags'])
|
34 |
+
similar_documents = self.db.similarity_search(cleaned_description)
|
35 |
+
similar_datasets = [f"{self.datasets_url_base}{x.metadata['id']}" for x in similar_documents if x.metadata['id'] not in query_url]
|
36 |
+
return {'datasets': similar_datasets}
|