|
import gradio as gr |
|
import os |
|
os.system('python -m spacy download en_core_web_sm') |
|
import spacy |
|
from spacy import displacy |
|
|
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
def text_analysis(text): |
|
doc = nlp(text) |
|
html = displacy.render(doc, style="dep", page=True) |
|
html = ( |
|
"" |
|
+ html |
|
+ "" |
|
) |
|
pos_count = { |
|
"char_count": len(text), |
|
"token_count": 0, |
|
} |
|
pos_tokens = [] |
|
|
|
for token in doc: |
|
pos_tokens.extend([(token.text, token.pos_), (" ", None)]) |
|
|
|
return pos_tokens, pos_count, html |
|
|
|
demo = gr.Interface( |
|
text_analysis, |
|
gr.Textbox(placeholder="Enter sentence here..."), |
|
["highlight", "json", "html"], |
|
examples=[ |
|
["What a beautiful morning for a walk!"], |
|
["It was the best of times, it was the worst of times."], |
|
["Look for something positive everyday, even if some days you have to look a little harder."], |
|
], |
|
) |
|
|
|
demo.launch() |
|
|