Spaces:
Runtime error
Runtime error
import gradio as gr | |
import sys | |
from BLIP.models.blip import blip_decoder | |
from PIL import Image | |
import requests | |
import torch | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from urllib.parse import urlparse | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
image_size = 384 | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
]) | |
model_url = "https://technionmail-my.sharepoint.com/personal/snoamr_campus_technion_ac_il/_layouts/15/download.aspx?share=EZxgXQaBXGREgDsQiaTcwAAB0z8jQA_hgAnwwPQDt8Dgew" | |
model = blip_decoder(pretrained=model_url, image_size=384, vit='base') | |
model.eval() | |
model = model.to(device) | |
def inference(raw_image): | |
# raw_image = torch.tensor(raw_image) | |
image = transform(raw_image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
caption = model.generate(image, sample=False, num_beams=3, max_length=60, min_length=5) | |
return caption[0] | |
inputs = [gr.Image(type='pil', interactive=False),] | |
outputs = gr.outputs.Textbox(label="Caption") | |
description = "Gradio demo for FuseCap: Leveraging Large Language Models to Fuse Visual Data into Enriched Image Captions. This demo features a BLIP-based model, trained using FuseCap." | |
examples = [["surfer.jpg"], ["bike.jpg"]] | |
article = "<p style='text-align: center'><a href='google.com' target='_blank'>place holder</a>" | |
iface = gr.Interface(fn=inference, | |
inputs="image", | |
outputs="text", | |
title="FuseCap", | |
description=description, | |
article=article, | |
examples=examples, | |
enable_queue=True) | |
iface.launch() | |