nontGcob's picture
releasing the app to the public
1728ec4
raw
history blame
5.88 kB
# Importing libraries
from nltk.corpus import wordnet
import nltk
import transformers
import pandas as pd
import json
import random
import torch
device='cpu'
# Declare the (trained) model that will be used
classifier = transformers.pipeline("zero-shot-classification", model="simple_trained_wsd_pipeline", device=device)
import spacy
# Part Of Speech tagging (POS tagging)
nlp = spacy.load("en_core_web_sm")
print('successfully download model')
def model(passage, level):
# pip install spacy
# pip install transformers
# pip install torch
# pip install en_core_web_sm
# python -m spacy download en_core_web_sm
# pip install spacy-download
# pip install nltk
nltk.download('wordnet')
nltk.download('omw-1.4')
# Passing file directories into variables
# text_input = "./text_input.txt"
cefr_vocab = "cefr-vocab.csv"
# Create and open the text file
# with open(text_input, "a") as file:
# file.write(".") # Add a full stop at the end to make sure there is a full stop at the end of the text for the model to understand where to stop the sentence
# Ask the user for the CEFR level
# while True:
# cefr_level = input("Which CEFR level you want to test?: ").upper()
# if "A1" in cefr_level or "A2" in cefr_level or "B1" in cefr_level or "B2" in cefr_level or "C1" in cefr_level or "C2" in cefr_level:
# break
# else:
# continue
cefr_level = level
# Read from the input file
# with open(text_input, "r") as file:
# txt = str(file.readlines()).replace("[", "").replace("'", "").replace("]", "")
txt = passage + "."
if "." in txt:
txt = (txt.split("."))
else:
txt = txt
text_dict = {}
for n in txt:
n = n.strip()
ex1 = nlp(n)
for word in ex1:
sentence_question_tag = n.replace(word.text, f"[{word.text}]")
text_dict[f"{word.lemma_} = {sentence_question_tag}"] = word.pos_
# Collect the tagging results (filter in just NOUN, PROPN, VERB, ADJ, or ADV only)
collector = {}
for key, value in text_dict.items():
if "NOUN" in value or "VERB" in value or "ADJ" in value or "ADV" in value:
collector[key] = value
# Collect the CEFR level of the words collected before
reference = pd.read_csv(cefr_vocab)
matching = {}
for row_idx in range(reference.shape[0]):
row = reference.iloc[row_idx]
key = f"{row.headword}, {row.pos}"
matching[key] = row.CEFR
# Convert pos of the word into all lowercase to match another data set with CEFR level
for key1, value1 in collector.items():
if value1 == "NOUN":
collector[key1] = "noun"
if value1 == "VERB":
collector[key1] = "verb"
if value1 == "ADJ":
collector[key1] = "adjective"
if value1 == "ADV":
collector[key1] = "adverb"
# Matching 2 datasets together by the word and the pos
ready2filter = {}
for key, value in matching.items():
first_key, second_key = key.split(", ")
for key2, value2 in collector.items():
key2 = key2.split(" = ")
if first_key == key2[0].lower():
if second_key == value2:
ready2filter[f"{key} = {key2[1]}"] = value
# Filter in just the vocab that has the selected CEFR level that the user provided at the beginning
filtered0 = {}
for key, value in ready2filter.items():
if cefr_level == "ALL":
filtered0[key] = value
else:
if value == cefr_level:
filtered0[key] = value
# Rearrange the Python dictionary structure
filtered = {}
for key, value in filtered0.items():
key_parts = key.split(', ')
new_key = key_parts[0]
new_value = key_parts[1]
filtered[new_key] = new_value
# Grab the definition of each vocab from the NLTK wordnet English dictionary
def_filtered = {}
for key3, value3 in filtered.items():
syns = wordnet.synsets(key3)
partofspeech, context = value3.split(" = ")
def_filtered[f"{key3} = {context}"] = []
# pos conversion
if partofspeech == "noun":
partofspeech = "n"
if partofspeech == "verb":
partofspeech = "v"
if partofspeech == "adjective":
partofspeech = "s"
if partofspeech == "adverb":
partofspeech = "r"
# print("def_filtered 0:", def_filtered)
# Adding the definitions into the Python dictionary, def_filtered (syns variable does the job of finding the relevant word aka synonyms)
for s in syns:
# print('s:', s)
# print("syns:", syns)
def_filtered[f"{key3} = {context}"].append(s.definition())
# print("def_filtered 1:", def_filtered)
# Use Nvidia CUDA core if available
# if torch.cuda.is_available():
# device=0
# else:
# Process Python dictionary, def_filtereddic
correct_def = {}
for key4, value4 in def_filtered.items():
vocab, context = key4.split(" = ")
sequence_to_classify = context
candidate_labels = value4
# correct_def[key4] = []
correct_def_list = []
temp_def = []
hypothesis_template = 'The meaning of [' + vocab + '] is {}.'
output = classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template)
# Process the score of each definition and add it to the Python dictionary, correct_def
for label, score in zip(output['labels'], output['scores']):
temp_def.append(label)
# print(temp_def)
for first in range(len(temp_def)):
if first == 0:
val = f">> {temp_def[first]}"
else:
val = f"{temp_def[first]}"
correct_def_list.append(val)
print(type(key4), type(correct_def_list))
correct_def[key4] = correct_def_list
# correct_def[key4].append(f"{label}")
return correct_def
# with open(T2E_exam, "r") as file:
# exam = file.readlines()
# print(exam)
# return(exam)
# passage = "Computer is good"
# level = "A1"
# print(model(passage, level))