import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms import moviepy.editor as mp from pydub import AudioSegment from PIL import Image import numpy as np torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cuda") transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def fn(vid): # Load the video using moviepy video = mp.VideoFileClip(vid) # Extract audio from the video audio = video.audio # Extract frames at 12 fps frames = video.iter_frames(fps=12) # Process each frame for background removal processed_frames = [] for frame in frames: pil_image = Image.fromarray(frame) processed_image = process(pil_image) processed_frames.append(np.array(processed_image)) # Create a new video from the processed frames processed_video = mp.ImageSequenceClip(processed_frames, fps=12) # Add the original audio back to the processed video processed_video = processed_video.set_audio(audio) # Return the processed video return processed_video @spaces.GPU def process(image): image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cuda") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) # Create a green screen image green_screen = Image.new("RGBA", image_size, (0, 255, 0, 255)) # Composite the image onto the green screen using the mask image = Image.composite(image, green_screen, mask) return image def process_file(f): name_path = f.rsplit(".", 1)[0] + ".png" im = load_img(f, output_type="pil") im = im.convert("RGB") transparent = process(im) transparent.save(name_path) return name_path in_video = gr.Video(label="birefnet") out_video = gr.Video() url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" demo = gr.Interface( fn, inputs=in_video, outputs=out_video, api_name="video" ) if __name__ == "__main__": demo.launch(show_error=True)