Spaces:
Build error
Build error
Commit
•
028a426
1
Parent(s):
ff43e05
add app.py
Browse files- app.py +86 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import glob
|
3 |
+
import pickle
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from utils.audio import load_spectrograms
|
8 |
+
from utils.compute_args import compute_args
|
9 |
+
from utils.tokenize import tokenize, create_dict, sent_to_ix, cmumosei_2, cmumosei_7, pad_feature
|
10 |
+
from model_LA import Model_LA
|
11 |
+
|
12 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
working_dir = "."
|
15 |
+
|
16 |
+
# load model
|
17 |
+
ckpts_path = os.path.join(working_dir, 'ckpt')
|
18 |
+
model_name = "Model_LA_e"
|
19 |
+
# Listing sorted checkpoints
|
20 |
+
ckpts = sorted(glob.glob(os.path.join(ckpts_path, model_name,'best*')), reverse=True)
|
21 |
+
|
22 |
+
# Load original args
|
23 |
+
args = torch.load(ckpts[0], map_location=torch.device(device))['args']
|
24 |
+
args = compute_args(args)
|
25 |
+
pretrained_emb = np.load("train_glove.npy")
|
26 |
+
token_to_ix = pickle.load(open("token_to_ix.pkl", "rb"))
|
27 |
+
state_dict = torch.load(ckpts[0], map_location=torch.device(device))['state_dict']
|
28 |
+
|
29 |
+
net = Model_LA(args, len(token_to_ix), pretrained_emb).to(device)
|
30 |
+
net.load_state_dict(state_dict)
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def inference(video_path, text):
|
35 |
+
|
36 |
+
# data preprocessing
|
37 |
+
# text
|
38 |
+
def clean(w):
|
39 |
+
return re.sub(
|
40 |
+
r"([.,'!?\"()*#:;])",
|
41 |
+
'',
|
42 |
+
w.lower()
|
43 |
+
).replace('-', ' ').replace('/', ' ')
|
44 |
+
|
45 |
+
s = [clean(w) for w in text.split() if clean(w) != '']
|
46 |
+
|
47 |
+
# Sound
|
48 |
+
_, mel, mag = load_spectrograms(video_path)
|
49 |
+
|
50 |
+
l_max_len = args.lang_seq_len
|
51 |
+
a_max_len = args.audio_seq_len
|
52 |
+
v_max_len = args.video_seq_len
|
53 |
+
L = sent_to_ix(s, token_to_ix, max_token=l_max_len)
|
54 |
+
A = pad_feature(mel, a_max_len)
|
55 |
+
V = pad_feature(mel, v_max_len)
|
56 |
+
# print shapes
|
57 |
+
print("Processed text shape: ", L.shape)
|
58 |
+
print("Processed audio shape: ", A.shape)
|
59 |
+
print("Processed video shape: ", V.shape)
|
60 |
+
return out
|
61 |
+
|
62 |
+
|
63 |
+
title="Emotion Recognition"
|
64 |
+
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector by using frame-by-frame detection. \
|
65 |
+
To use it, simply upload your video, or click one of the examples to load them.\
|
66 |
+
This demo and model represent the work of \"Achieving Face Swapped Deepfakes Detection Using EfficientNetV2\" by Lee Sheng Yeh. \
|
67 |
+
The examples were extracted from Celeb-DF(V2)(Li et al, 2020) and FaceForensics++(Rossler et al., 2019). Full reference details is available in \"references.txt.\" \
|
68 |
+
The examples are used under fair use to demo the working of the model only. If any copyright is infringed, please contact the researcher via this email: tp054565@mail.apu.edu.my, the researcher will immediately take down the examples used.\
|
69 |
+
"
|
70 |
+
|
71 |
+
examples = [
|
72 |
+
['Video1-fake-1-ff.mp4'],
|
73 |
+
['Video6-real-1-ff.mp4'],
|
74 |
+
['Video3-fake-3-ff.mp4'],
|
75 |
+
['Video8-real-3-ff.mp4'],
|
76 |
+
['real-1.mp4'],
|
77 |
+
['fake-1.mp4'],
|
78 |
+
]
|
79 |
+
|
80 |
+
gr.Interface(inference,
|
81 |
+
inputs = ["video", "text"],
|
82 |
+
outputs=["text","text", gr.outputs.Video(label="Detected face sequence")],
|
83 |
+
title=title,
|
84 |
+
description=description,
|
85 |
+
examples=examples
|
86 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz
|